题目链接:传送门
题意:
相当于有一个长度为m的路,我们有n种砖,每种砖被表示为一个字符串,一个长度大于等于2的后缀等于
另一个字符串的前缀那么那一块砖就可以放在这块砖的后面。
分析:
这个就是常见的铺砖的那个模型变化而来的,但是这题的递推关系需要根据题目给定的字符串的结构来决
定,由于m比较大,我们需要用矩阵来优化,根据题目给定的字符串来确定状态转移矩阵A,初始的矩阵为单
位矩阵I,然后ans = A^(m-1)*I.在确定A的时候注意给字符串去重。
代码如下:
#include <iostream>
#include <string>
#include <cstring>
#include <algorithm>
#include <cstdio>
#include <set>
using namespace std;
const int maxn = 55;
typedef long long LL;
const LL mod = 1e9+7;
int n,m,cnt;
string str[maxn];
set<string > st;
struct matrix{
LL a[maxn][maxn];
matrix(){
memset(a,0,sizeof(a));
}
};
matrix I,A;
void init(){
for(int i=0;i<maxn;i++)
for(int j=0;j<maxn;j++)
I.a[i][j]=(i==j);
}
int judge(string a,string b){
for(int j=2;j<=a.length()&&j<=b.length();j++){
bool tag = 0;
for(int i=0;i<j;i++){
if(a[a.length()-j+i]!=b[i]){
tag=1;
break;
}
}
if(!tag) return 1;
}
return 0;
}
void getA(){
for(int i=0;i<cnt;i++){
for(int j=0;j<cnt;j++){
A.a[i][j]=judge(str[i],str[j]);
}
}
}
matrix multi(matrix A,matrix B){
matrix C;
for(int i=0;i<cnt;i++){
for(int j=0;j<cnt;j++){
for(int k=0;k<cnt;k++){
C.a[i][j]=(C.a[i][j]+A.a[i][k]*B.a[k][j]%mod)%mod;
}
}
}
return C;
}
LL quick(matrix A,int b){
matrix ans=I;
while(b){
if(b&1) ans=multi(ans,A);
b>>=1;
A=multi(A,A);
}
LL sum=0;
for(int i=0;i<cnt;i++){
for(int j=0;j<cnt;j++){
sum=(sum+ans.a[i][j])%mod;
}
}
return sum;
}
int main()
{
init();
int T;
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
if(n==0||m==0){
puts("0");
continue;
}
string s;
st.clear();
cnt=0;
for(int i=0;i<n;i++){
cin>>s;
if(st.find(s)==st.end()){
str[cnt++]=s;
st.insert(s);
}
}
getA();
init();
printf("%I64d\n",quick(A,m-1));
}
return 0;
}
/****
5
5 50
121 123 213 132 321
1 0 0 1 0
0 1 0 0 0
0 0 1 0 1
0 0 1 1 0
0 0 0 1 1
797922656
**/