A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
如果直接递归,通不过大数据测试,先贴一个自己实现的dp
class Solution
{
public:
int uniquePaths(int m, int n)
{
if (m == 0 || n == 0) return 0;
vector<vector<int> >dp(m + 1, vector<int> (n + 1, 0));
dp[1][1] = 1;
if (m > 1)
dp[2][1] = 1;
if (n > 1)
dp[1][2] = 1;
judge(m, n, dp);
return dp[m][n];
}
int judge(int m, int n, vector<vector<int> >& dp)
{
if (dp[m][n] > 0)
return dp[m][n];
int hor = 0;
int ver = 0;
if (m > 1)
hor = dp[m - 1][n] > 0 ? dp[m - 1][n] : judge(m - 1, n, dp);
if (n > 1)
ver = dp[m][n - 1] > 0 ? dp[m][n - 1] : judge(m, n - 1, dp);
dp[m][n] = hor + ver;
return dp[m][n];
}
};
再贴一个来自别人的答案 巧妙的dp
class Solution
{
public:
int uniquePaths(int m, int n)
{
vector<int> maxV(n,0);
maxV[0]=1;
for(int i =0; i< m; i++)
{
for(int j =1; j<n; j++)
{
maxV[j] = maxV[j-1] + maxV[j];
}
}
return maxV[n-1];
}
};