Transformer中Query-Key-Value(QKV)机制的详细解析

Transformer中Query-Key-Value(QKV)机制的详细中文解析:

一、核心概念

Transformer的自注意力机制通过Q(Query)、K(Key)、V(Value)三元组实现动态的上下文建模,取代了RNN/CNN的固定模式交互。其核心思想是:每个词通过Q去“查询”其他词的K,找到相关词后,聚合它们的V。

1. Q/K/V的生成

二、注意力计算步骤

在这里插入图片描述

三、Q/K/V的直观理解

Query(Q)

  • 代表当前词“想了解什么”,比如句子中的代词“它”可能通过Q寻找前文提到的实体(如“猫”)。

Key(K)

  • 表示每个词“能提供什么信息”,如“猫”的K可能包含“动物”“宠物”等语义。

Value(V)

  • 实际用于传递的信息,例如当“它”关注到“猫”时,V可能是“猫”的具体特征(如“尾巴”“喵喵叫”)。

🌰 例子:
句子:“动物因为跑得太快,它撞到了树。”

  • “它”的Q:寻找“跑得快”的主体。

  • “动物”的K:包含“主体”信息。

  • 结果:Q-K匹配后,“它”的注意力权重集中在“动物”上,最终输出会聚合“动物”的V。

四、多头注意力(Multi-Head Attention)

在这里插入图片描述

五、Q/K/V的变体与应用

自注意力(Self-Attention)

  • Q、K、V均来自同一输入序列(如编码器处理原文时)。

  • 作用:建模序列内部关系(如词与词、段落与段落)。

交叉注意力(Cross-Attention)

  • Q来自解码器,K、V来自编码器(如机器翻译中,解码器用Q查询编码器的上下文)。

  • 作用:实现跨序列对齐(如源语言到目标语言)。

掩码注意力(Masked Attention)

  • 解码器中使用,防止当前词看到未来信息(通过掩码矩阵将未来位置权重设为 −∞)。

六、为什么Q/K/V需要分开?

  • 角色分离:

    • 如果Q=K=V,模型退化为简单自相关,无法区分“查询内容”和“被查询内容”。

    • 独立参数允许Q/K学习不同的匹配模式(如Q侧重“问题”,K侧重“答案”)。

七、代码示例(简化版)

import torch
import torch.nn.functional as F

def scaled_dot_product_attention(Q, K, V):
    d_k = Q.size(-1)
    scores = torch.matmul(Q, K.transpose(-2, -1)) / (d_k ** 0.5)
    weights = F.softmax(scores, dim=-1)
    output = torch.matmul(weights, V)
    return output

八、关键优势

  • 长距离依赖:任意两个词直接交互,无需逐步传递(克服RNN瓶颈)。

  • 并行计算:所有注意力权重可同时计算(适合GPU加速)。

  • 可解释性:通过可视化注意力权重,可分析模型关注点(如指代消解、关键词提取)。

Java绘制不规则几何图形,比如划曲线,写字,线条随意画,如截图所示,甚至可以写出文字:   不规则图形的绘制代码:   public class IrregularShapeDemo extends JFrame {    GeneralPath gPath= new GeneralPath(); //GeneralPath对象实例   //构造函数   public IrregularShapeDemo() {    super("不规则图形的绘制"); //调用父类构造函数    enableEvents(AWTEvent.MOUSE_EVENT_MASK|AWTEvent.MOUSE_MOTION_EVENT_MASK); //允许事件    setSize(300, 200); //设置窗口尺寸    setVisible(true); //设置窗口可视    setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); //关闭窗口时退出程序    }    public void paint(Graphics g) { //重载窗口组件的paint()方法    Graphics2D g2D = (Graphics2D)g; //获取图形环境    g2D.draw(gPath); //绘制路径    }    public static void main(String[] args) {    new IrregularShapeDemo();    }    protected void processMouseEvent(MouseEvent e) { //鼠标事件处理    if(e.getID() == MouseEvent.MOUSE_PRESSED) {    aPoint = e.getPoint(); //得到当前鼠标点    gPath = new GeneralPath(); //重新实例化GeneralPath对象    gPath.moveTo(aPoint.x,aPoint.y); //设置路径点    }    }    protected void processMouseMotionEvent(MouseEvent e) { //鼠标运动事件处理    if(e.getID() == MouseEvent.MOUSE_DRAGGED) {    aPoint = e.getPoint(); //得到当前鼠标点    gPath.lineTo(aPoint.x, aPoint.y); //设置路径    gPath.moveTo(aPoint.x, aPoint.y);    repaint(); //重绘组件    }    }   }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值