引言
在人工智能的世界里,生成式AI(Generative AI)是一股新兴的力量,它不仅能够模仿人类的创造力,甚至在某些领域超越了人类的想象。在本系列博客中,我们将深入探索CMU(卡内基梅隆大学)的生成式人工智能课程,从基础理论到实际应用,再到我们可能遇到的挑战和困境,一起揭开生成式AI的神秘面纱。
什么是生成式AI?
生成式AI是人工智能的一个分支,它涉及到开发能够模仿或超越人类行为的计算机系统。这些系统在多个子领域有着广泛的应用,包括感知、推理、规划、沟通、创造力、控制/运动/操作和学习。随着大型语言模型(LLMs)的出现,我们对学习问题的处理方式发生了变革,例如通过上下文学习。
递归神经网络(RNN)和语言模型
递归神经网络是一种适合于处理序列数据的神经网络,它能够捕捉时间序列中的动态特征。在语言模型中,RNN可以用来预测文本序列中的下一个词或字符。通过学习大量的文本数据,RNN能够捕捉到语言的统计规律,并生成连贯、有意义的文本。
语言模型的基本概念
语言模型主要做三件事:
- 将原始文本转换为单词或“标记”序列。
- 学习或近似这些序列的联合概率分布。
- 从隐含的条件分布中采样,生成新的单词或“标记”。
在实践中,我们通常直接学习或近似这个条件分布。例如,使用链式法则预测下一个词,基于前文中的词。