机器学习
dawnohdawn
(⊙o⊙)哦
展开
-
[机器学习算法推导与总结] 线性回归最小二乘法的两种求解方法对比
normal equation(解析法) 求解目标函数如下,其中XXX为所有样本的所有特征,是一个M(M个样本)行N(N个特征)列的矩阵,YYY是M个样本的真实值,是M行的列向量,ωω\omega是回归系数,是N行的列向量。 minJ(ω)=||Y−Xω||2minJ(ω)=||Y−Xω||2min J(\omega)= ||Y-X\omega||^2 用解析法求解ωω\ome...原创 2018-08-06 14:03:38 · 4784 阅读 · 3 评论 -
[杂谈] 机器学习与优化算法的对比
机器学习算法的本质: 在求解一个问题(输入X,输出什么?)时,不清楚问题的模型是什么,不知道各个变量之间符合什么规则(式子),所以干脆把现成的各种万能模型(线性回归、逻辑回归、SVM、神经网络等等)套用进去,希望这些万能的模型可以拟合实际问题的模型。 但是这些万能模型里面具体的参数是未定的,需要使用大量数据进行学习。等参数确定之后,我们的拟合模型才完全确定。参数的学习相当于损失函数最小...原创 2018-08-02 16:33:06 · 4460 阅读 · 2 评论 -
[机器学习算法推导与总结] SVM
分类函数 SVM是使用一个分类超平面来分类的: f(x)=ωTx+bf(x)=ωTx+bf(x)=\omega^T x+b 其中ωω\omega为分类超平面的法向量。因此样本到分类超平面的距离(Margin)是有正负之分的。当样本到分类超平面的距离>0时,类别为1,距离<0时,类别为-1。距离是这样计算的: d(xi)=ωTxi+b||ω||d(xi)原创 2019-08-01 14:40:10 · 204 阅读 · 0 评论 -
[机器学习工程总结] 特征工程
数据清洗 不可忽视修复数据 用于训练和预测的样本数据,有可能口径是不一致的,如果不加以修复,可能会会导致线下效果很好,在线预测gg的惨剧。 数据首先要注意的就是,用于训练和预测的是两条数据流,这两条数据流是不是一致的,因为只要是人开发的系统,即使你自己重新写两遍,因为上下游依赖的种种东西,它就可能不一致,就可能出毛病。这是最重要的,一致性的问题是最重要的。另外你用于训练的数据,是否...原创 2019-08-02 11:47:17 · 364 阅读 · 1 评论 -
[机器学习算法推导与总结] 逻辑回归
梯度下降求解 目标函数为: J(ω)=−1M∑i=1M[y(i)log(h(x(i)))+(1−y(i))log(1−h(x(i)))]J(ω)=−1M∑i=1M[y(i)log(h(x(i)))+(1−y(i))log(1−h(x(i)))]J(\omega)=-\frac{1}{M} \sum_{i=1}^M[ y^{(i)} log ( h( x^{(i)}))+(1- y^{(i...原创 2019-08-02 11:52:39 · 177 阅读 · 0 评论