人脸关键点检测5——Face++(1)

######《Extensive Facial Landmark Localization with Coarse-to-fine Convolutional Network Cascade》

  • ICCV2013,Face++在DCNN模型上进行改进,提出由粗到精的人脸关键点检测算法。
    实现了68个点的高精度定位,该算法将人脸关键点分为内部关键点和轮廓关键点,内部关键点包含眉毛、眼睛、鼻子、嘴巴共计51个关键点,轮廓关键点包含17个关键点。

论文中4级CNN的级联网络设计:
这里写图片描述
1)针对内部 51 个关键点,采用四个层级的级联网络进行检测。其中,Level-1主要作用是获得面部器官的边界框;Level-2 的输出是51个关键点预测位置,这里起到一个粗定位作用,目的是为了给 Level-3 进行初始化;Level-3 会依据不同器官进行从粗到精的定位;Level-4 的输入是将 Level-3 的输出进行一定的旋转,最终将51个关键点的位置进行输出。
2)针对外部 17 个关键点,仅采用两个层级的级联网络进行检测。Level-1 与内部关键点检测的作用一样,主要是获得轮廓的 bounding box;Level-2直接预测17个关键点,没有从粗到精定位的过程,因为轮廓关键点的区域较大,若加上Level-3和Level-4,会比较耗时间。
注:单一模型在多点检测的效果上不好。
边界点的定位难点:1.局部纹理信息少;2.定义模糊,背景噪声大。
如果68个点在一起训练,边界点的L2损失将占主导作用,loss不均衡的问题。

网络结构:
这里写图片描述

其中,N1是内部关键点的第二级,N2是轮廓关键点,N3为其它结构。

算法主要创新点由以下三点:(1)把人脸的关键点定位问题,划分为内部关键点和轮廓关键点分开预测,有效的避免了 loss 不均衡问题;(2)在内部关键点检测部分,并未像DCNN 那样每个关键点采用两个CNN 进行预测,而是每个器官采用一个CNN 进行预测,从而减少计算量;(3)相比于DCNN,没有直接采用人脸检测器返回的结果作为输入,而是增加一个边界框检测层(Level-1),可以大大提高关键点粗定位网络的精度。


注:博众家之所长,集群英之荟萃。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Peanut_范

您的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值