斐波那契数列

题目描述

大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项。

n<=39


递归方法:递归对于斐波那契数列而言重复计算太多,所以会造成栈溢出,但是可以认为往后推,让每一次递归的跨度大一些,这样的话递归

的次数就会减少,所花费的代价就会比较小,简而言之,就是不要用F(n)=F(n-1)+F(n-2)的关系,用F(n-3)或F(n-4)甚至是F(n-6)的关系。


class Solution {
public:
    int Fibonacci(int n) {
        int sum = 0;
        if(n<=0)
            sum = 0;
        if(n==1)
            sum = 1;
        if(n==2)
            sum = 1;
        if(n==3)
            sum = 2;
        if(n==4)
            sum = 3;
        if(n==5)
            sum = 5;
        if(n==6)
            sum = 8;
        if(n>6)
            sum = 5*Fibonacci(n-6)+8*Fibonacci(n-5);
        return sum; 
    }
};



迭代法:声明两个临时变量,然后一直保持着两个变量的累加就可以了


class Solution {
public:
    int Fibonacci(int n) {
        int fn = 0;
        int fn2=0,fn1=1;
        if(n<=0)
            fn = 0;
        if(n==1)
            fn = 1;
        if(n>1){
            for(int i=1;i<n;i++){
                fn=fn1+fn2;
                fn2=fn1;
                fn1=fn;
            }
        }
        return fn; 
    }
};


矩阵乘法:该思想是借鉴的牛客一位牛油,链接:https://www.nowcoder.com/questionTerminal/c6c7742f5ba7442aada113136ddea0c3
来源:牛客网


     * O(logN)解法:由f(n) = f(n-1) + f(n-2),可以知道[f(n),f(n-1)] = [f(n-1),f(n-2)] * {[1,1],[1,0]}
     * 所以最后化简为:[f(n),f(n-1)] = [1,1] * {[1,1],[1,0]}^(n-2)
     * 所以这里的核心是:
     * 1.矩阵的乘法
     * 2.矩阵快速幂(因为如果不用快速幂的算法,时间复杂度也只能达到O(N))



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值