题目描述
n<=39
递归方法:递归对于斐波那契数列而言重复计算太多,所以会造成栈溢出,但是可以认为往后推,让每一次递归的跨度大一些,这样的话递归
的次数就会减少,所花费的代价就会比较小,简而言之,就是不要用F(n)=F(n-1)+F(n-2)的关系,用F(n-3)或F(n-4)甚至是F(n-6)的关系。
class Solution {
public:
int Fibonacci(int n) {
int sum = 0;
if(n<=0)
sum = 0;
if(n==1)
sum = 1;
if(n==2)
sum = 1;
if(n==3)
sum = 2;
if(n==4)
sum = 3;
if(n==5)
sum = 5;
if(n==6)
sum = 8;
if(n>6)
sum = 5*Fibonacci(n-6)+8*Fibonacci(n-5);
return sum;
}
};
迭代法:声明两个临时变量,然后一直保持着两个变量的累加就可以了
class Solution {
public:
int Fibonacci(int n) {
int fn = 0;
int fn2=0,fn1=1;
if(n<=0)
fn = 0;
if(n==1)
fn = 1;
if(n>1){
for(int i=1;i<n;i++){
fn=fn1+fn2;
fn2=fn1;
fn1=fn;
}
}
return fn;
}
};
矩阵乘法:该思想是借鉴的牛客一位牛油,链接:https://www.nowcoder.com/questionTerminal/c6c7742f5ba7442aada113136ddea0c3
来源:牛客网
* O(logN)解法:由f(n) = f(n-1) + f(n-2),可以知道[f(n),f(n-1)] = [f(n-1),f(n-2)] * {[1,1],[1,0]}
* 所以最后化简为:[f(n),f(n-1)] = [1,1] * {[1,1],[1,0]}^(n-2)
* 所以这里的核心是:
* 1.矩阵的乘法
* 2.矩阵快速幂(因为如果不用快速幂的算法,时间复杂度也只能达到O(N))