离线, 离散化坐标.当第 i 只鸟飞到坐标(x, y), 如果(x, y)有鸟, 就更新mx[i], 再打标记, 更新(x, y)里面的鸟的mx[i].然后把第 i 只鸟加入到(x, y)所在的平衡树内, 再打标记更新 tog[i].
treap区间更新的时候, 插入删除的时候, 注意要push_down(). 还有在删除的时候如果有旋转操作,也要push_down();
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std;
#define LL long long
#define pii pair<int, int>
#define MP make_pair
#define ls i << 1
#define rs ls | 1
#define md (ll + rr >> 1)
#define lson ll, md, ls
#define rson md + 1, rr, rs
#define inf 0x3f3f3f3f
#define N 100010
#define M 500010
int ch[M][2];
int rand_val[M], key[M], sz[M], cnt[M], tot;
int mx[N], tog[N], w[N];
int d1[M], d2[M];
int creat(int val){
++tot;
ch[tot][0] = ch[tot][1] = 0;
key[tot] = val;
rand_val[tot] = rand();
sz[tot] = cnt[tot] = 1;
return tot;
}
int cmp(int x, int val){
if(w[key[x]] == w[val]) return key[x] < val ? 1 : 0;
return w[key[x]] < w[val] ? 1 : 0;
}
int cmp2(int x, int val){
if(key[x] == val) return -1;
return w[key[x]] <= w[val] ? 1 : 0;
}
void mark_down(int x, int u, int v){
d1[x] = max(d1[x], u);
d2[x] = max(d2[x], v);
mx[key[x]] = max(mx[key[x]], u);
tog[key[x]] = max(tog[key[x]], v);
}
void push_up(int x){
sz[x] = cnt[x] + sz[ch[x][0]] + sz[ch[x][1]];
}
void push_down(int x){
if(!d1[x] && !d2[x] || !x) return ;
if(ch[x][0])
mark_down(ch[x][0], d1[x], d2[x]);
if(ch[x][1])
mark_down(ch[x][1], d1[x], d2[x]);
d1[x] = d2[x] = 0;
}
void rot(int &x, int d){
int k = ch[x][d^1];
ch[x][d^1] = ch[k][d];
ch[k][d] = x;
push_up(x);
push_up(k);
x = k;
}
void insert(int &x, int val){
if(x == 0){
x = creat(val);
return ;
}
push_down(x);
int d = cmp(x, val);
insert(ch[x][d], val);
if(rand_val[ch[x][d]] > rand_val[x]) rot(x, d ^ 1);
push_up(x);
}
void dele(int &x, int val){
if(x == 0) return ;
push_down(x);
int d = cmp(x, val);
if(key[x] == val) d = -1;
if(d == -1){
if(!ch[x][0]) x = ch[x][1];
else if(!ch[x][1]) x = ch[x][0];
else{
int d2 = rand_val[ch[x][0]] > rand_val[ch[x][1]] ? 1 : 0;
push_down(ch[x][d2^1]);
rot(x, d2);
dele(ch[x][d2], val);
}
}
else dele(ch[x][d], val);
if(x) push_up(x);
}
int get_max(int x){
if(!x) return -1;
push_down(x);
if(ch[x][1])
return get_max(ch[x][1]);
return w[key[x]];
}
struct query{
int x, y, id;
void input(){
scanf("%d%d%d", &id, &x, &y);
}
};
struct point{
int x, y;
point(int x = 0, int y = 0) : x(x), y(y) {}
bool operator < (const point &b) const{
return x < b.x || x == b.x && y < b.y;
}
bool operator == (const point &b) const{
return x == b.x && y == b.y;
}
};
point p[N], san[M];
query q[M];
int z[N], rt[M], sum;
void gao(int id, int i){
if(rt[id]){
mx[i] = max(get_max(rt[id]), mx[i]);
mark_down(rt[id], w[i], 0);
}
insert(rt[id], i);
mark_down(rt[id], 0, sz[rt[id]] - 1);
}
int haxi(point v){
return lower_bound(san + 1, san + 1 + sum, v) - san;
}
int main(){
int n;
scanf("%d", &n);
for(int i = 1; i <= n; ++i){
scanf("%d%d%d", &w[i], &p[i].x, &p[i].y);
san[++sum] = p[i];
}
int t;
scanf("%d", &t);
for(int i = 0; i < t; ++i){
q[i].input();
san[++sum] = point(q[i].x, q[i].y);
}
sort(san + 1, san + sum + 1);
sum = unique(san + 1, san + sum + 1) - san - 1;
for(int i = 1; i <= n; ++i){
z[i] = haxi(p[i]);
gao(z[i], i);
}
for(int i = 0; i < t; ++i){
int u = q[i].id, xx = q[i].x, yy = q[i].y;
dele(rt[z[u]], u);
z[u] = haxi(point(xx, yy));
gao(z[u], u);
}
for(int i = 1; i <= n; ++i){
dele(rt[z[i]], i);
}
for(int i = 1; i <= n; ++i){
printf("%lld\n", 1LL * mx[i] * tog[i]);
}
return 0;
}