数字图像处理与机器视觉-1-MATLAB安装与简单的图像操作

数字图像处理与机器视觉》是一本书,主要介绍的是图像处理与机器视觉方面的知识。

最近在看这本书入门,顺便记录下在学习的过程中碰到的问题和实践,作为backup。好记性不如烂笔头大笑

为了更好的理解书中内容,还是需要装一个工具,手动实现下书中的流程,或者自己动手实现新的小功能。

首先必备工具VS或者MATLAB,Mac版的MATLAB可以在百度上搜索破解版的,离线安装,然后替换一个库,用离线license激活就可以使用了。

第0章主要介绍了图像、像素的一些基本知识

图像的分类:一般为亮度图RGB图索引图二值图多帧图像

还有图像空间,分辨率,邻接性连通性,区域和边界等预备知识,这些建议在网上找相关资料熟悉下。初次理解的话还是很有些绕。

第1章介绍了MATLAB的工作环境,具体语言,与图像处理相关的函数及库等

第2章介绍了Visual C++图像处理基础,提一下BMP位图,在windows平台很常见的图像保存格式

  • BMP位图主要分为四个部分:

1.位图文件头数据结构,BITMAPFILEHEADER;

2.位图信息头数据结构,BITMAPINFOHEADER;

3.调色板,即索引表;

4.实际位图数据;

  • C++自带的Img类和该书陪套的ImgProcess,含源码,可以阅读下源码便与理解书中内容

第3章为图像的点运算

在前面的基础知识铺垫后,开始学习最基本的图像处理操作:

RGB->灰度图,然后统计其灰度直方图

灰度直方图主要描述了一幅图像灰度级的统计信息,简单来说就是统计一幅图中各个级别灰度出现的次数

MATLAB里面已经有灰度直方图函数imhist,动手操作下,进行对比(建议不要读较大的图片,我用的一张1536*2048的图,读了快十秒)

效果如下:

=== 2018-1-11 ===

灰度图的线型变换

公式为O = Fa * I + Fb;

其中O为输出图像想,I为输入图像;

该公式为一次线性函数,有几个规律如下:

  • Fa > 1时,处理后的图片对比度增大;
  • Fa < 1时,处理后的图片对比度减小;
  • Fa = 1 & Fb != 0时,图像整体亮度发生变化;
  • Fa = -1, Fb = 255时,灰度反转,可以增强暗色图片中亮度较大的细节
通过公式也可以发现O最后计算的值有可能大于255或者小于0,会因为亮度达到饱和而丢失部分细节

一些“比较好玩”(有用)的MATLAB函数

subplot(2,2,1),可以参见百度百科subplot的解释,说的非常清楚;

stem(X,Y,‘.’),这个百度上也有stemstem,这两篇博客结合起来看,stem的用法基本上就很全面了;

其实MATLAB自带的有函数说明和example可以点进去查看;

最后附上张灰度处理效果图

第一张是原图:


第二张是灰度处理图,对比起来看很方便:


因为之前博客里面有谈到用OpenGL的shader来调节图片亮度,取反和生成灰度图,所以这一节相对比较简单,权当练手吧。

=== 2018-1-11 ===

最后遗留一个问题O = Fa * I + Fb;

当Fa为-1时,Fa * I 全部为0,这个比较诡异,明天再排查下是不是MATLAB的特性

=== 2018-1-12 ===

今天用MATLAB验证了下:

令Fa = -1, Fb = 0,最后得到O的灰度矩阵全部为0;

令Fa = 1,Fb = 256,最后得到O的灰度矩阵全部为255;

所以应该是MATLAB把O判断为图像类数据,做了类似防止内存溢出的安全处理,把矩阵内灰度值做了限制,保证其位于(0~255)之间

如果没有CSDN积分 ,也可以直接戳这里下载数字图像处理与机器视觉 密码: f5cb

下一篇:继续学习图像处理中常见的灰度变换

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值