归并排序和快速排序的实现

两种排序都是用的是divide and conquer的思想,时间复杂度都是O(nlogn).

归并排序的难点在merge部分,T(n) = 2(n/2) + n, 所以复杂度是O(nlogn)


public static void mergeSort(int[] A){
		if(A == null || A.length <= 1) return;
		mergeSort2(A, 0, A.length - 1);
	}
	private static void mergeSort2(int[] A, int start, int end){
		if(start < end){
			int mid = (start + end) / 2;
			mergeSort2(A, start, mid);
			mergeSort2(A, mid + 1, end);
			merge(A, start, mid, end);
		}
	}
	private static void merge(int[] A, int start, int mid, int end){
		int[] temp = new int[end - start + 1];
		int i = start, j = mid + 1, k = 0;
		while(i <= mid && j <= end){
			if(A[i] <= A[j]){
				temp[k++] = A[i++];
			} else {
				temp[k++] = A[j++];
			}
		}
		while(i <= mid){
			temp[k++] = A[i++];
		}
		while(j <= end){
			temp[k++] = A[j++];
		}
		for(int p = 0; p < temp.length; p++){
			A[start++] = temp[p];
		}
	}


public static void quickSort(int[] A){
		if(A == null || A.length <= 1) return;
		quickSort2(A, 0, A.length - 1);
	}
	private static void quickSort2(int[] A, int start, int end){
		if(start < end){
			int i = start, j = end, pivot = A[start];
			while(i < j){
				while(i < j && A[j] >= pivot){
					j--;
				}
				while(i < j && A[i] <= pivot){
					i++;
				}
				if(i < j){
					int temp = A[i];
					A[i] = A[j];
					A[j] = temp;
				}
			}
			A[start] = A[i];
			A[i] = pivot;
			quickSort2(A, start, i - 1);
			quickSort2(A, i + 1, end);
		}
	}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值