CSU 1082: 憧憬一下集训 (线段树 扫描线)

连接 :


http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1082

题目可以将每个人的两种适应度转化为一个在坐标系里的矩形。假设音量为x轴,空调为y轴。

那么题目要求的可以转化为 在所有的矩形里选择一个点 这个点可以覆盖最多的矩形。

题目可以进一步转化 需要用到扫描线,只考虑每个矩形的上边和下边,每个边都构成一个扫描线(沿着y轴方向),对于每个扫描线只要统计在这个扫描线里被覆盖最多的点。答案就是2*n个扫描线中 的最大值。


#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <sstream>
#include <cstdio>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <set>
#include <map>
#define lson o<<1, l, m
#define rson o<<1|1, m+1, r
#define PII pair<int, int>
#define ALL(x) x.begin(),x.end()
#define mem(a) memset(a,0,sizeof(a))
typedef long long ll;
const double pi = acos(-1.0);
const int MAX = 0x3f3f3f3f;
const ll mod = 1000000007ll;
const int N = 10005;
using namespace std;

int n;

struct C {
	int x1, x2, y, v;
} a[N*2];

C con(int x1, int x2, int y, int v) {
	C tmp; tmp.v = v, tmp.x1 = x1, tmp.x2 = x2, tmp.y = y;
	return tmp;
}

bool cmp(C e, C r) {
	if(e.y != r.y) return e.y < r.y;
	return e.v > r.v;
}

int add[N<<2], sum[N<<2], mx[N<<2], A, B, C;

void down(int o) {
	if(add[o] != 0) {
		add[o<<1] += add[o];
		add[o<<1|1] += add[o];
		mx[o<<1] += add[o];
		mx[o<<1|1] += add[o];
		mx[o] += add[o];
		add[o] = 0;
	}
}

void update(int o, int l, int r) {
	if(A <= l && r <= B) {
		add[o] += C;
		mx[o] += C;
	} else {
		int m = (l+r)/2;
		down(o);
		if(A <= m) update(lson);
		if(m < B ) update(rson);
		mx[o] = max(mx[o<<1], mx[o<<1|1]);
	}
}

int main() {
	
//	freopen("in.txt", "r", stdin);
//	freopen("out.txt", "w", stdout);
	
	while(cin >> n) {
		
		int m = 0, TOT = 0, x1, x2, y1, y2;
		for(int i = 0; i < n; i++) {
			scanf("%d%d%d%d", &x1, &x2, &y1, &y2);
			x1++, x2++, y1++, y2++;
			a[m++] = con(x1, x2, y1, 1);
			a[m++] = con(x1, x2, y2, -1);
			TOT = max(TOT, x2);
		}
		
		sort(a, a+m, cmp);
		mem(add);
		mem(mx);
		
		int ans = 0;
		for(int i = 0; i < m-1; i++) {
			A = a[i].x1;
			B = a[i].x2;
			C = a[i].v;
			update(1, 1, TOT);
			ans = max(ans, mx[1]);
		}
		
		printf("%d\n", ans);
		
	}
	
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值