大数据课程K15——Spark的TF-IDF计算Term权重

本文介绍了TF-IDF算法的概述,定义及其在Spark中的应用。TF-IDF是一种评估词在文档集中的重要性的技术,词频越高,逆文档频率越大,词的重要性越强。文章通过实例解释了如何使用Spark计算TF-IDF,并展示了如何评估词的信息量。
摘要由CSDN通过智能技术生成

文章作者邮箱:yugongshiye@sina.cn              地址:广东惠州

 ▲ 本章节目的

⚪ 了解Spark的TF-IDF算法概念;

⚪ 了解Spark的TF-IDF算法定义;

⚪ 了解Spark的TF-IDF算法案例;

一、TF-IDF算法概述

TF-IDF(term frequency–inverse document frequency)是一种用于信息检索与数据挖掘的常用加权技术。TF意思是词频(Term Frequency),IDF意思是逆文本频率指数(Inverse Document Frequency)。用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度。字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降。TF-IDF加权的各种形式常被搜索引擎应用,作为文件与用户查询之间相关程度的度量或评级。

Term Frequency (tf)即此

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值