BZOJ 1061: [Noi2008]志愿者招募(最小费用最大流)

1061: [Noi2008]志愿者招募

Time Limit: 20 Sec   Memory Limit: 162 MB
Submit: 2616   Solved: 1630
[ Submit][ Status][ Discuss]

Description

申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管。布布刚上任就遇到了一个难题:为即将启动的奥运新项目招募一批短期志愿者。经过估算,这个项目需要N 天才能完成,其中第i 天至少需要Ai 个人。 布布通过了解得知,一共有M 类志愿者可以招募。其中第i 类可以从第Si 天工作到第Ti 天,招募费用是每人Ci 元。新官上任三把火,为了出色地完成自己的工作,布布希望用尽量少的费用招募足够的志愿者,但这并不是他的特长!于是布布找到了你,希望你帮他设计一种最优的招募方案。

Input

第一行包含两个整数N, M,表示完成项目的天数和可以招募的志愿者的种类。 接下来的一行中包含N 个非负整数,表示每天至少需要的志愿者人数。 接下来的M 行中每行包含三个整数Si, Ti, Ci,含义如上文所述。为了方便起见,我们可以认为每类志愿者的数量都是无限多的。

Output

仅包含一个整数,表示你所设计的最优方案的总费用。

Sample Input

3 3
2 3 4
1 2 2
2 3 5
3 3 2

Sample Output

14

HINT

招募第一类志愿者3名,第三类志愿者4名 30%的数据中,1 ≤ N, M ≤ 10,1 ≤ Ai ≤ 10; 100%的数据中,1 ≤ N ≤ 1000,1 ≤ M ≤ 10000,题目中其他所涉及的数据均 不超过2^31-1。



这道题正确的解法是构造网络,求网络最小费用最大流,但是模型隐藏得较深,不易想到。构造网络是该题的关键,以下面一个例子说明构图的方法和解释。

例如一共需要4天,四天需要的人数依次是4,2,5,3。有5类志愿者,如下表所示:

种类 1 2 3 4 5
时间 1-2 1-1 2-3 3-3 3-4
费用 3 4 3 5 6

设雇佣第i类志愿者的人数为X[i],每个志愿者的费用为V[i],第j天雇佣的人数为P[j],则每天的雇佣人数应满足一个不等式,如上表所述,可以列出

P[1] = X[1] + X[2] >= 4

P[2] = X[1] + X[3] >= 2

P[3] = X[3] + X[4] +X[5] >= 5

P[4] = X[5] >= 3

对于第i个不等式,添加辅助变量Y[i] (Y[i]>=0) ,可以使其变为等式

P[1] = X[1] + X[2] - Y[1] = 4

P[2] = X[1] + X[3] - Y[2] = 2

P[3] = X[3] + X[4] +X[5] - Y[3] = 5

P[4] = X[5] - Y[4] = 3

在上述四个等式上下添加P[0]=0,P[5]=0,每次用下边的式子减去上边的式子,得出

① P[1] - P[0] = X[1] + X[2] - Y[1] = 4

② P[2] - P[1] = X[3] - X[2] -Y[2] +Y[1] = -2

③ P[3] - P[2] = X[4] + X[5] - X[1] - Y[3] + Y[2] =3

④ P[4] - P[3] = - X[3] - X[4] + Y[3] - Y[4] = -2

⑤ P[5] - P[4] = - X[5] + Y[4] = -3

观察发现,每个变量都在两个式子中出现了,而且一次为正,一次为负。所有等式右边和为0。接下来,根据上面五个等式构图。

  • 每个等式为图中一个顶点,添加源点S和汇点T。
  • 如果一个等式右边为非负整数c,从源点S向该等式对应的顶点连接一条容量为c,权值为0的有向边;如果一个等式右边为负整数c,从该等式对应的顶点向汇点T连接一条容量为c,权值为0的有向边。
  • 如果一个变量X[i]在第j个等式中出现为X[i],在第k个等式中出现为-X[i],从顶点j向顶点k连接一条容量为∞,权值为V[i]的有向边。
  • 如果一个变量Y[i]在第j个等式中出现为Y[i],在第k个等式中出现为-Y[i],从顶点j向顶点k连接一条容量为∞,权值为0的有向边。

构图以后,求从源点S到汇点T的最小费用最大流,费用值就是结果。

上面的方法很神奇得求出了结果,思考为什么这样构图。我们将最后的五个等式进一步变形,得出以下结果

① - X[1] - X[2] + Y[1] + 4 = 0

② - X[3] + X[2] + Y[2] - Y[1] - 2 = 0

③ - X[4] - X[5] + X[1] + Y[3] - Y[2] + 3 = 0

④ X[3] + X[4] - Y[3] + Y[4] - 2 = 0

⑤ X[5] - Y[4] - 3 = 0

可以发现,每个等式左边都是几个变量和一个常数相加减,右边都为0,恰好就像网络流中除了源点和汇点的顶点都满足流量平衡。每个正的变量相当于流入该顶点的流量,负的变量相当于流出该顶点的流量,而正常数可以看作来自附加源点的流量,负的常数是流向附加汇点的流量。因此可以据此构造网络,求出从附加源到附加汇的网络最大流,即可满足所有等式。而我们还要求noi_employee_3最小,所以要在X变量相对应的边上加上权值,然后求最小费用最大流

#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <algorithm>
#define LL long long 
using namespace std;
const int MAXN = 2000 + 20;
const int MAXM = 40000 + 40;
const int INF = 0x7fffffff;
struct Edge
{
	int to, next, cap, flow, cost;
}edge[MAXM];
int head[MAXN], tot, pre[MAXN], dis[MAXN];
bool vis[MAXN];
int N;
int read()
{
	int x = 0, f = 1; char ch = getchar();
	while(ch < '0' || ch > '9'){if(ch == '-') f *= -1; ch = getchar();}
	while(ch >= '0' && ch <= '9'){x = x * 10 + ch - '0'; ch = getchar();}
	return x * f;
}
void init()
{
	tot = 0;
	memset(head, -1, sizeof(head));
}
void addedge(int u, int v, int cap, int cost)
{
	edge[tot].to = v; edge[tot].cap = cap;
	edge[tot].cost = cost; edge[tot].flow = 0;
	edge[tot].next = head[u];head[u] = tot++;
	edge[tot].to = u; edge[tot].cap = 0;
	edge[tot].cost = -cost; edge[tot].flow = 0;
	edge[tot].next = head[v]; head[v] = tot++;
}
bool spfa(int s, int t)
{
	queue<int>q;
	for(int i=0;i<N;i++)
	{
		dis[i] = INF; vis[i] = false; pre[i] = -1;
	}
	dis[s] = 0; vis[s] = true; q.push(s);
	while(!q.empty())
	{
		int u = q.front();
		q.pop();vis[u] = false;
		for(int i=head[u];i!=-1;i=edge[i].next)
		{
			int v = edge[i].to;
			if(edge[i].cap > edge[i].flow && dis[v] > dis[u] + edge[i].cost)
			{
				dis[v] = dis[u] + edge[i].cost;
				pre[v] = i;
				if(!vis[v])
				{
					vis[v] = true;
					q.push(v);
				}
			}
		}
	}
	if(pre[t] == -1) return false;
	else return true;
}
int mincostmaxflow(int s, int t, long long &cost)
{
	int flow = 0; cost = 0;
	while(spfa(s, t))
	{
		int Min = INF;
		for(int i=pre[t];i!=-1;i=pre[edge[i^1].to])
		{
			if(Min > edge[i].cap - edge[i].flow)
				Min = edge[i].cap - edge[i].flow;
		}
		for(int i=pre[t];i!=-1;i=pre[edge[i^1].to])
		{
			edge[i].flow += Min;
			edge[i^1].flow -= Min;
			cost += edge[i].cost * Min;
		}
		flow += Min;
	}
	return flow;
}
int n, m;
int P[MAXN], a, b, c;
int main()
{
	n = read(), m = read();
	N = n + 3; init();
	for(int i=1;i<=n;i++) P[i] = read();
	for(int i=1;i<=m;i++)
	{
		a = read(); b = read(); c = read();
		addedge(a, b + 1, INF, c);
	}
	int S = 0, T = n + 2;
	for(int i=1;i<=n+1;i++)
	{
		int x = P[i] - P[i-1];
		if(x >= 0) addedge(S, i, x, 0);
		else addedge(i, T, -x, 0);
	}
	for(int i=2;i<=n+1;i++)
	{
		addedge(i, i-1, INF, 0);
	}
	long long  cost = 0;
	int ans = mincostmaxflow(S, T, cost);
	printf("%lld\n", cost);
	return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值