opencv图像处理
文章平均质量分 96
恬梦
未必光芒万丈,始终温暖有光
展开
-
图像特征描述子(三)——ORB
本文主要参考:1.https://blog.csdn.net/yang843061497/article/details/38553765 2.https://eason.blog.csdn.net/article/details/51764971 3.https://blog.csdn.net/Chenyukuai6625/article/details/75123380 ...原创 2021-07-05 16:23:44 · 2949 阅读 · 0 评论 -
图像特征描述子(二)——SIFT、SURF
本文主要参考文章:1.https://zhuanlan.zhihu.com/p/70385018 2.https://blog.csdn.net/zhou4411781/article/details/100713402 3.https://blog.csdn.net/dcrmg/article/details/52577555 ...原创 2021-07-02 19:00:24 · 3581 阅读 · 1 评论 -
图像特征描述子(一)——HOG
本文主要参考博客:1.https://www.cnblogs.com/panchuangai/p/12567973.html 2.https://blog.csdn.net/weixin_38367817/article/details/83153954 3.https://blog.csdn.net/weixin_44947897/article/details/1071...原创 2021-06-30 09:13:31 · 3461 阅读 · 0 评论 -
GMS图像特征匹配学习简要记录
GMS: Grid-based Motion Statistics for Fast, Ultra-robust Feature CorrespondenceCVPR2017code:https://github.com/JiawangBian/GMS-Feature-Matcher本文主要参考:1.https://blog.csdn.net/zhangjunhit/article/details/77891666 2.https://www.i...原创 2020-12-07 09:46:17 · 857 阅读 · 0 评论 -
Hog原理实现及特征可视化学习记录
本文记录在Hog学习、使用中一位大神写的很好的两篇博客,以备后续翻看学习1.hog原理与Opencv实现https://blog.csdn.net/chaipp0607/article/details/708888991)该文中详细介绍了Hog特征提取流程,并对每一步的原因进行了讲解,如在最初对图像先进行色彩和伽马归一化是为了减少光照影响等等。2)Hog计算中涉及滑动窗口win、块block、单元cell。在提取Hog特征时,窗口是最小的特征提取单元,例如,在目标检测时,是将滑动窗口的特征送原创 2020-12-04 11:47:13 · 960 阅读 · 0 评论 -
灰度共生矩阵学习记录
文章参考博客:1.https://blog.csdn.net/u014488388/article/details/52877710 2.https://blog.csdn.net/qq_37059483/article/details/78292869 3.https://www.cnblogs.com/-wenli/p/11734808.html1.灰度共生矩阵定义(百度百科):取图像(N×N)中...原创 2020-12-02 17:19:25 · 1786 阅读 · 0 评论 -
场景特征描述子(全局特征)-GIST
本文参考:1.https://blog.csdn.net/qq_16234613/article/details/78909839 2.https://www.cnblogs.com/justany/archive/2012/12/06/2804211.html1.GIST特点:GIST对场景进行识别分类不需要对图像进行分割和局部特征提取,相对于局部特征,该特征是更为“宏观”的特征描述方式,忽略图片的局部特点。我们注意到:大多数城市看起来就像天空和地面由建筑物外...原创 2020-12-02 15:01:24 · 2871 阅读 · 0 评论 -
图像形状上下文特征ShapeContexts
本文参考1.https://blog.csdn.net/app_12062011/article/details/53606191 2.https://blog.csdn.net/wl2002200/article/details/51076598 3.https://blog.csdn.net/chaihuimin/article/details/76975086 4.https://docs.openc...原创 2020-12-02 13:33:26 · 3240 阅读 · 0 评论 -
opencv HSV空间提取图像中红色,及判断每一个像素颜色
本文主要参考https://blog.csdn.net/zdyueguanyun/article/details/50739374 https://blog.csdn.net/liumoude6/article/details/78318053结合这两篇文章以及自己的一点思考,提取图像中的红色并把其它部分都置为白色代码如下:void colorFilter(Mat srcImage, Mat &outImage){ Mat srcImage_...原创 2020-08-10 16:15:52 · 6477 阅读 · 5 评论 -
warpAffine函数旋转、仿射变换保持完整图片
https://blog.csdn.net/u013105205/article/details/78826789 这篇博客讲的非常清楚对其中最后可展现完整的代码做简单记录(该代码也摘自上边链接的最后一段代码):Mat img = imread(IMG_PATH);//读入图像//定义仿射变换的中心、角度、尺度center=Point2f(img.cols / 2.0, img.rows / 2.0);//原文说要获得完整结果图像,这里变换之前的中心必须为原图的中心degree=-7;s转载 2020-08-10 15:36:05 · 1481 阅读 · 0 评论 -
opencv 最小外接矩阵旋转角度
本篇主要参考了如下三个博客: https://blog.csdn.net/u013925378/article/details/84563011 https://blog.csdn.net/weixin_40647819/article/details/80884594 https://www.cnblogs.com/little-monkey/p/742957...原创 2020-08-10 14:07:25 · 4205 阅读 · 0 评论 -
opencv c++ 计算两点之间的角度值
计算两点pt1与pt2之间的角度值 Point2f pt1(2.0,2.0), pt2(4.0,4.0); //计算pt1与pt2之间的角度 float radian = atan2((pt2.y - pt1.y), (pt2.x - pt1.x));//弧度 该函数返回值范围是[-pi,pi] float angle = radian * 180 / 3.1415926;//角度 cout << "radian:" << radian ...原创 2020-08-07 11:42:07 · 5385 阅读 · 0 评论 -
图像配准融合(二)——基于特征的图像配准方法(c++)
本文主要记录我在基于特征的图像配准方法方面的一点儿实验以及解决问题的方法。本文图像配准主要参考如下3个链接:1.https://blog.csdn.net/qq_27737701/article/details/822896072.https://www.cnblogs.com/skyfsm/p/7411961.html3.https://blog.csdn.net/czl389/article/details/65937864一、总结1、2,基于特征的图像配准融合方法实现流程如下:原创 2020-06-24 10:28:23 · 4914 阅读 · 3 评论 -
图像配准融合(一)——基于互信息的图像配准方法(c++)
1、内容简介图像配准方法按照其算法原理可以分为:基于灰度信息的配准、基于变换域信息的配准、基于特征信息的配准。(本人实验主要集中在基于灰度信息的配准以及基于特征信息的配准两类方法,对基于变换域信息的配准不熟悉,以下不涉及该方面内容的讨论。本篇主要是基于互信息的图像配准与融合(属于基于灰度信息配准与融合)的一些记录;下一篇主要介绍基于特征信息的配准与融合。)基于互信息的图像配准算法常用于医学图像配准中,下面是一个互信息的图像配准方法...原创 2020-06-23 14:58:21 · 8106 阅读 · 8 评论 -
opencv检测直线——投影法
以下是我对投影法的一点认识和实验:投影法就是数字图像在某个方向上进行像素累加。通过水平和垂直方向的投影,可以得到表格图像投影的几个特点:(1)表格区域的水平与竖直投影分布通常出现周期性的尖峰(2)在文字投影的行与行之间或列与列之间常会出现明显的空白区 因此,求图像水平以及竖直投影,根据特点分别设以阈值就可以将横线以及竖直线所在位置确定。 第一步:求图像的原创 2017-08-31 11:39:12 · 4851 阅读 · 0 评论 -
opencv检测直线方法——霍夫变换
最近在学习霍夫变换检测直线,发现一个网址对它讲解的很清楚,故记录。 zhlifly将opencv英文官方文档霍夫变化进行了翻译,其中详细讲解了霍夫变换原理,opencv中的两种霍夫变换方法并附着代码以及实验结果。 该网址是 http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/imgproc/imgtr原创 2020-06-03 14:36:10 · 1104 阅读 · 0 评论 -
opencv检测直线方法——形态学方法
在阅读文献中,偶然发现使用使用形态学方法也可以检测直线,故做实验并记录。使用该方法,需要定义一个长度为L的结构元素element,其大小应足够大以保留图像中的字符笔划,然而又恰好能检测出图像中最短的表格线。 定义如下两个结构element用以检测图中水平、竖直的表格线: Mat element1 = getStructu原创 2017-08-31 09:29:53 · 7340 阅读 · 0 评论