Triangle

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[
     [2],
    [3,4],
   [6,5,7],
  [4,1,8,3]
]

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

Subscribe to see which companies asked this question.

解题技巧:

该题可以采用动态规划求解。从上层到下层,依次计算并更新dp数组,最后求出dp数组中的最小数。

对于第j层,状态转移方程: dp[i] = min(dp[i], dp[i-1]) + triangle[j][i];

代码:

int minimumTotal(vector< vector<int> >& triangle)
{
    int res = 0x3f3f3f;
    int dp[100000];
    dp[0] = triangle[0][0];
    for(int j = 1; j < triangle.size(); j ++)
    {
        for(int i = triangle[j].size() - 1; i >= 0; i--)
        {
            if(i == triangle[j].size() - 1)
            {
                dp[i] = dp[i-1] + triangle[j][i];
            }
            else if(i == 0)
            {
                dp[i] = dp[i] + triangle[j][i];
            }
            else
            {
                dp[i] = min(dp[i], dp[i-1]) + triangle[j][i];
            }
        }
    }
    int l1, l2;
    l1 = triangle.size();
    l2 = triangle[l1-1].size();
    for(int i = 0; i < l2; i ++)
    {
        if(dp[i] < res) res = dp[i];
    }
    return res;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值