Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
Subscribe to see which companies asked this question.
解题技巧:
该题可以采用动态规划求解。从上层到下层,依次计算并更新dp数组,最后求出dp数组中的最小数。
对于第j层,状态转移方程: dp[i] = min(dp[i], dp[i-1]) + triangle[j][i];
代码:
int minimumTotal(vector< vector<int> >& triangle)
{
int res = 0x3f3f3f;
int dp[100000];
dp[0] = triangle[0][0];
for(int j = 1; j < triangle.size(); j ++)
{
for(int i = triangle[j].size() - 1; i >= 0; i--)
{
if(i == triangle[j].size() - 1)
{
dp[i] = dp[i-1] + triangle[j][i];
}
else if(i == 0)
{
dp[i] = dp[i] + triangle[j][i];
}
else
{
dp[i] = min(dp[i], dp[i-1]) + triangle[j][i];
}
}
}
int l1, l2;
l1 = triangle.size();
l2 = triangle[l1-1].size();
for(int i = 0; i < l2; i ++)
{
if(dp[i] < res) res = dp[i];
}
return res;
}