题目介绍
小Hi、小Ho还有被小Hi强拉来的小Z,准备组队参加一个智力竞赛。竞赛采用过关制,共计N个关卡。在第i个关卡中,小Hi他们需要获得Ai点分数才能够进入下一关。每一关的分数都是独立计算的,即使在一关当中获得超过需要的分数,也不会对后面的关卡产生影响。
小Hi他们可以通过答题获得分数。答对一道题获得S点分数,答错一道题获得T点分数。在所有的N个关卡中,小Hi他们一共有M次答题机会。在每个关卡中,都可以在累计答题次数不超过M的情况下使用任意次的答题机会。
那么现在问题来了,对于给定的N、M、S、T和A,小Hi他们至少需要答对多少道题目才能够完成所有的关卡呢?
输入
每个输入文件包含多组测试数据,在每个输入文件的第一行为一个整数Q,表示测试数据的组数。
每组测试数据的第一行为四个正整数N、M、S和T,意义如前文所述。
第二行为N个正整数,分别表示A1~AN。
对于40%的数据,满足1<=N,M<=100
对于100%的数据,满足1<=N,M<=1000,1<=T<S<=10,1<=Ai<=50
对于100%的数据,满足1<=Q<=100
输出
对于每组测试数据,如果小Hi他们能够顺利完成关卡,则输出一个整数Ans,表示小Hi他们至少需要答对的题目数量,否则输出No。
小Hi他们可以通过答题获得分数。答对一道题获得S点分数,答错一道题获得T点分数。在所有的N个关卡中,小Hi他们一共有M次答题机会。在每个关卡中,都可以在累计答题次数不超过M的情况下使用任意次的答题机会。
那么现在问题来了,对于给定的N、M、S、T和A,小Hi他们至少需要答对多少道题目才能够完成所有的关卡呢?
输入
每个输入文件包含多组测试数据,在每个输入文件的第一行为一个整数Q,表示测试数据的组数。
每组测试数据的第一行为四个正整数N、M、S和T,意义如前文所述。
第二行为N个正整数,分别表示A1~AN。
对于40%的数据,满足1<=N,M<=100
对于100%的数据,满足1<=N,M<=1000,1<=T<S<=10,1<=Ai<=50
对于100%的数据,满足1<=Q<=100
输出
对于每组测试数据,如果小Hi他们能够顺利完成关卡,则输出一个整数Ans,表示小Hi他们至少需要答对的题目数量,否则输出No。
样例输入
1
2 10 9 1
12 35
样例输出
5
解题思路(参考题解)
我们可以用g[i][j]表示答错i题,答对j题时,能达到的 最好记录 是什么。
这里记录用一个二元组(x, y)表示,其中x是关卡,y是得分。也就是说g[i][j]=(x, y)表示答错i题,答对j题时,最高能进行到第x关,并且得分是y。
显然任何两个记录(x1, y1)和(x2, y2)都是可比较优劣的。同时为了描述方便,我们定义一个记录"加"得分的算子+,(x1, y1) + s = (x2, y2)表示:如果当前在第x1关y1分,那么再加s分之后,到达的是第x2关y2分。
我们可以按答题总数划分阶段,每次转移就是枚举最后一题是答对还是答错了:
g[i][j] = max{g[i-1][j] + T, g[i][j-1] + S}
最后我们在所有g[i][j]里找到通过第n关,并且j最小的。
这个算法总复杂度是O(M^2),转移是O(1)的。
这里记录用一个二元组(x, y)表示,其中x是关卡,y是得分。也就是说g[i][j]=(x, y)表示答错i题,答对j题时,最高能进行到第x关,并且得分是y。
显然任何两个记录(x1, y1)和(x2, y2)都是可比较优劣的。同时为了描述方便,我们定义一个记录"加"得分的算子+,(x1, y1) + s = (x2, y2)表示:如果当前在第x1关y1分,那么再加s分之后,到达的是第x2关y2分。
我们可以按答题总数划分阶段,每次转移就是枚举最后一题是答对还是答错了:
g[i][j] = max{g[i-1][j] + T, g[i][j-1] + S}
最后我们在所有g[i][j]里找到通过第n关,并且j最小的。
这个算法总复杂度是O(M^2),转移是O(1)的。
代码
#include<iostream>
using namespace std;
struct aa
{
int x;
int y;
};
aa g[1001][1001];
int q,m,n,s,t;
int a[1000];
aa addA(aa a1,int value)
{
a1.y+=value;
if(a1.x<n&&a1.y>=a[a1.x])
{
a1.x++;
a1.y=0;
}
return a1;
}
aa maxAA(aa a1,aa a2)
{
if(a1.x>a2.x||(a1.x==a2.x&&a1.y>a2.y))
return a1;
return a2;
}
int main()
{
cin>>q;
for(int ii=0;ii<q;ii++)
{
cin>>n>>m>>s>>t;
for(int j=0;j<n;j++)
{
cin>>a[j];
}
g[0][0].x=0;
g[0][0].y=0;
for(int j=1;j<=m;j++)
{
g[0][j]=addA(g[0][j-1],s);
g[j][0]=addA(g[j-1][0],t);
}
for(int i=2;i<=m;i++)
{
for(int j=1;j<i;j++)
{
aa a1=addA(g[i-j][j-1],s);
aa a2=addA(g[i-j-1][j],t);
g[i-j][j]=maxAA(a1,a2);
}
}
int minJ=1001;
for(int i=0;i<=m;i++)
{
for(int j=0;j<=i;j++)
{
if(g[i-j][j].x>=n)
{
minJ=min(minJ,j);
}
}
}
if(minJ<1001)
cout<<minJ<<endl;
else
cout<<"No"<<endl;
}
return 0;
}