智力竞赛(hiho145周)

题目介绍

小Hi、小Ho还有被小Hi强拉来的小Z,准备组队参加一个智力竞赛。竞赛采用过关制,共计N个关卡。在第i个关卡中,小Hi他们需要获得Ai点分数才能够进入下一关。每一关的分数都是独立计算的,即使在一关当中获得超过需要的分数,也不会对后面的关卡产生影响。
小Hi他们可以通过答题获得分数。答对一道题获得S点分数,答错一道题获得T点分数。在所有的N个关卡中,小Hi他们一共有M次答题机会。在每个关卡中,都可以在累计答题次数不超过M的情况下使用任意次的答题机会。
那么现在问题来了,对于给定的N、M、S、T和A,小Hi他们至少需要答对多少道题目才能够完成所有的关卡呢?
输入
每个输入文件包含多组测试数据,在每个输入文件的第一行为一个整数Q,表示测试数据的组数。
每组测试数据的第一行为四个正整数N、M、S和T,意义如前文所述。
第二行为N个正整数,分别表示A1~AN。
对于40%的数据,满足1<=N,M<=100
对于100%的数据,满足1<=N,M<=1000,1<=T<S<=10,1<=Ai<=50
对于100%的数据,满足1<=Q<=100
输出
对于每组测试数据,如果小Hi他们能够顺利完成关卡,则输出一个整数Ans,表示小Hi他们至少需要答对的题目数量,否则输出No。

样例输入
1
2 10 9 1
12 35 
样例输出
5

解题思路(参考题解)

我们可以用g[i][j]表示答错i题,答对j题时,能达到的 最好记录 是什么。
这里记录用一个二元组(x, y)表示,其中x是关卡,y是得分。也就是说g[i][j]=(x, y)表示答错i题,答对j题时,最高能进行到第x关,并且得分是y。
显然任何两个记录(x1, y1)和(x2, y2)都是可比较优劣的。同时为了描述方便,我们定义一个记录"加"得分的算子+,(x1, y1) + s = (x2, y2)表示:如果当前在第x1关y1分,那么再加s分之后,到达的是第x2关y2分。
我们可以按答题总数划分阶段,每次转移就是枚举最后一题是答对还是答错了:
g[i][j] = max{g[i-1][j] + T, g[i][j-1] + S}
最后我们在所有g[i][j]里找到通过第n关,并且j最小的。
这个算法总复杂度是O(M^2),转移是O(1)的。

代码

#include<iostream>
using namespace std;

struct aa
{
	int x;
	int y;
};

aa g[1001][1001];
int q,m,n,s,t;
int a[1000];

aa addA(aa a1,int value)
{
	a1.y+=value;
	if(a1.x<n&&a1.y>=a[a1.x])
	{
		a1.x++;
		a1.y=0;
	}
	return a1;
}

aa maxAA(aa a1,aa a2)
{
	if(a1.x>a2.x||(a1.x==a2.x&&a1.y>a2.y))
		return a1;
	return a2;

}

int main()
{
	cin>>q;
	for(int ii=0;ii<q;ii++)
	{
		cin>>n>>m>>s>>t;
		for(int j=0;j<n;j++)
		{
			cin>>a[j];
		}
		g[0][0].x=0;
		g[0][0].y=0;
		for(int j=1;j<=m;j++)
		{
			g[0][j]=addA(g[0][j-1],s);
			g[j][0]=addA(g[j-1][0],t);
		}
		for(int i=2;i<=m;i++)
		{
			for(int j=1;j<i;j++)
			{
				aa a1=addA(g[i-j][j-1],s);
				aa a2=addA(g[i-j-1][j],t);
				g[i-j][j]=maxAA(a1,a2);
			}
		}

		int minJ=1001;
		for(int i=0;i<=m;i++)
		{
			for(int j=0;j<=i;j++)
			{
				if(g[i-j][j].x>=n)
				{
					minJ=min(minJ,j);
				}
			}
		}

		if(minJ<1001)
			cout<<minJ<<endl;
		else
			cout<<"No"<<endl;
	}
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值