给定一个长度为N(N>1)的整型数组A,可以将A划分成左右两个部分,左部分A[0..K],右部分A[K+1..N-1],K可以取值的范围是[0,N-2]。求这么多划分方案中,左部分中的最大值减去右部分最大值的绝对值,最大是多少?
给定整数数组A和数组的大小n,请返回题目所求的答案。
测试样例:
[2,7,3,1,1],5
返回:6
import java.util.*;
public class MaxGap {/*分析:
* 先求出全局最大值max,下标为j 全局最大值在的那一段最大值肯定是固定的
* 最大值在左部分 求出[n-1,j)每一位的最大值 找出最大值中的最小值 right_max
* 如果N-1是最大值那么右部分最大值固定为A[N-1]
* 如果N-1是最小值那么与最大值max的差值最大
* 如果既不是最大值也不是最小值
* 那么随着下标的递减 如果新加入的数A[i]比N-1大 右侧最大值更新 右侧最大值与数组全局最大值差减小
* 如果新加入的数[i]比N-1小 右侧最大值不变
* 因此right_max=A[N-1]
* 最大值在右部分 求出[0,j)每一位的最大值 找出最大值中的最小值 left_max
* 同理left_max = A[0]
* left_max right_max 其中比较小的与max做差得到结果*/
public int findMaxGap(int[] A, int n) {
int max = Integer.MIN_VALUE;
for (int i = 0; i < n; i++) {
if (A[i]>max){
max = A[i];
}
}
int left_max = A[0];
int right_max = A[n-1];
return Math.abs(max-(left_max>right_max?right_max:left_max));
}
}
题目来源:http://www.nowcoder.com/practice/f5805cc389394cf69d89b29c0430ff27?rp=2&ru=/activity/oj&qru=/ta/2016test/question-ranking