最小的K个数

本文介绍了一种基于堆排序原理来寻找数组中最小的K个数的方法。通过实现HeapSort和AdjustHeap函数,该算法可以高效地找到指定数量的最小元素,并返回这些元素组成的列表。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import java.util.ArrayList;
public class Solution {
    public ArrayList<Integer> GetLeastNumbers_Solution(int [] input, int k) {
         ArrayList<Integer> list = new ArrayList<Integer>();
if(input==null||input.length==0||k>input.length){
return list;
}
HeapSort(input,k);

for(int x=k;x<input.length;x++){
if(input[x]<input[0]){
input[0]=input[x];
AdjustHeap(input,0,k);
}
}
for(int x=0;x<k;x++){
list.add(input[x]);
}
return list;   
    }
    public void AdjustHeap(int a[],int i,int length){
   int child;
   int temp;
   for(;i*2+1<length;i=child){
       child = 2*i+1;
       temp=a[child];
       if(child<length-1&&a[child]<a[child+1]){
           child++;
       }
       if(a[i]<a[child]){
          temp=a[child];
          a[child]=a[i];
          a[i] = temp;
       }
       else break;
   }
}
public void HeapSort(int a[],int length){
   for(int i=length/2-1;i>=0;i--){
       AdjustHeap(a,i,length);
   }
}

}

题目来源:最小的k个数

参考:堆排序原理

在C语言中,找到一组整数中的最小k个数可以采用多种算法实现,其中一种常见的方法是使用优先队列(通常称为堆),特别是大顶堆(Max Heap)。这里提供一个简单的示例,使用大顶堆结构: ```c #include <stdio.h> #include <stdlib.h> // 定义一个数组大小 #define MAX_SIZE 100 // 结构体表示堆节点,包含值和索引 typedef struct { int value; int index; } MinHeapNode; // 大顶堆实现,用于存储前k小的元素 void max_heapify(int arr[], int n, int i) { int largest = i; // 初始化最大值位置为根节点 int left = 2 * i + 1; // 左孩子 int right = 2 * i + 2; // 右孩子 if (left < n && arr[left] > arr[largest]) { largest = left; } if (right < n && arr[right] > arr[largest]) { largest = right; } if (largest != i) { // 如果有更大值 swap(&arr[i], &arr[largest]); // 交换 max_heapify(arr, n, largest); // 递归调整子树 } } // 建立大顶堆 void build_max_heap(int arr[], int k) { for (int i = k / 2 - 1; i >= 0; i--) { max_heapify(arr, k, i); } } // 添加新元素到堆并保持堆性质 void insert(int arr[], int n, int k, int new_val, int new_index) { arr[n++] = new_val; // 添加新元素 max_heapify(arr, k, n - 1); // 调整以保持堆 } // 获取最小k个数 void get_min_k(int arr[], int k) { printf("The smallest %d numbers are:\n", k); for (int i = 0; i < k; i++) { printf("%d ", arr[0]); swap(&arr[0], &arr[k - 1]); // 将当前堆顶移到末尾 max_heapify(arr, k - 1, 0); // 更新堆 } } // 主函数示例 int main() { int arr[] = {9, 8, 7, 6, 5, 4, 3, 2, 1}; int n = sizeof(arr) / sizeof(arr[0]), k = 3; build_max_heap(arr, k); // 创建初始堆 // 假设我们有新元素插入 insert(arr, n, k, 100, 10); // 新元素:100, 索引:10 get_min_k(arr, k); // 输出前k小数 return 0; } ``` 在这个例子中,`build_max_heap()`函数建立了一个大顶堆,`insert()`函数用于添加新元素并维护堆属性,`get_min_k()`函数则从堆中获取并删除最小的k个元素。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值