描述
给定N个整数二元组(X1, Y1), (X2, Y2), … (XN, YN)。
请你计算其中有多少对二元组(Xi, Yi)和(Xj, Yj)满足Xi + Xj = Yi + Yj且i < j。
输入
第一行包含一个整数N。
以下N行每行两个整数Xi和Yi。
对于70%的数据,1 ≤ N ≤ 1000
对于100%的数据,1 ≤ N ≤ 100000 -1000000 ≤ Xi, Yi ≤ 1000000
输出
一个整数表示答案。
样例输入
5
9 10
1 3
5 5
5 4
8 6
样例输出
2
思路:
题目求Xi+Xj=Yi+YjXi+Xj=Yi+Yj 且 i<ji<j , 这样乍一看需要遍历的统计,其实我们可以对这个等式变一下型 Xi−Yi=Yj−XjXi−Yi=Yj−Xj 这样的话,我们就可以用map来保存Xi−YiXi−Yi的值的个数 然后每次遍历到 jj 就去查询 在map里有多少个,然后再往插入这个值
#include <bits/stdc++.h>
using namespace std;
int main()
{
map<long,long>mp;
int n;
long long x,y;
cin >> n;
long long res = 0;
for (int i = 0; i < n; ++i) {
cin >> x >> y;
if (i == 0) {
mp[x-y] = 1;
}
else {
res += mp[y-x];
mp[x-y] += 1;
}
}
cout << res << endl;
return 0;
}
本文介绍了一种高效算法,用于计算给定整数二元组中满足特定条件的配对数量。通过将问题转化为利用哈希表进行查找的形式,避免了传统遍历方法的时间复杂度瓶颈。
1193

被折叠的 条评论
为什么被折叠?



