NPC问题——回溯算法、聚类分析

八皇后问题

public class EightQueen {
    public static int num=1;
    public void Queen(int queenNum)
    {
        String queenLocation[][]=new String[queenNum][queenNum];
          //init(queenLocation);
      
        int c[]=new int[queenNum];
        advance(0, queenNum, c, queenLocation);
    }
    
    private void advance(int k,int queenNum ,int c[],String queenLocation[][])
    {
         for(int col=0;col<queenNum;col++)
        {
            c[k]=col;
            if(isSafe(c, k))
            {
                if(k==queenNum-1)
                {
                    init(queenLocation);
                    for(int i=0;i<queenNum;i++)//填充棋盘
                    {
                        queenLocation[i][c[i]]="Q";  
                    }
                    printQueen(queenLocation, num++);//打印出当前的可行方案
                }else
                {
                    advance(k+1,queenNum,c,queenLocation);
                }
            }
        }
    }
    
    private boolean isSafe(int c[],int currentQueenNum)
    {
        //当前是第几个皇后,当前和皇后依次和前面的皇后比较
        //currentQueenNum表示当前是第几个皇后
        if(currentQueenNum==0)
            return true;
        else
        {
            for(int i=0;i<currentQueenNum;i++)
            {
                if(c[i]==c[currentQueenNum]||(c[i]-c[currentQueenNum])==(i-currentQueenNum)||(c[i]-c[currentQueenNum])==(currentQueenNum-i))
                    return false;
            }
            return true;
        }
    }
    /**
     * 对棋盘的初始化
     * @param queenLocation 
     */
    private void init(String [][]queenLocation)
    {
        int n=queenLocation.length;
        
        for(int i=0;i<n;i++)
        {
            for(int j=0;j<n;j++)
            {
                    queenLocation[i][j]="x";
            }
        }
    }
    /**
     *打印棋盘
     * @param queenLocation
     * @param num 
     */
    private void printQueen(String [][]queenLocation ,int num)
    {
        int n=queenLocation.length;
        String queenString="";
        for(int i=0;i<n;i++)
        {
            for(int j=0;j<n;j++)
            {
                if(j==(n-1)){
                    queenString+=queenLocation[i][j]+"\n";
                }
                else{
                     queenString+=queenLocation[i][j]+"   ";
                }
            }
        }
        System.out.println("第"+num+"种解决方案:");
        System.out.println(queenString);
    }
    
    public static void main(String []args)
    {
    	EightQueen queen=new EightQueen();
        int queenNumber=8;//皇后数量
        queen.Queen(queenNumber);
        System.out.println("总共有"+(num-1)+"种解决方案");
    }
}



2、   1(1).根据变量如人际关系、成绩、游戏时间、目标从学生集中选出C个比较合适的样本作为初始聚类中心。
          (2)、用前C个样本作为初始聚类中心。
          (3)、将全部样本随机地分成C类,计算每类的样本均值,将样本均值作为初始聚类中心。

       2、(1)按就近原则将样本归入各聚类中心所代表的类中。
             (2)、取一样本,将其归入与其最近的聚类中心的那一类中,重新计算样本均值,更新聚类中心。然后取下一样本,重复操作,直至所有样本归入相应类中。
     3、采用误差平方和准则函数判断聚类是否合理,不合理则修改分类。循环进行判断、修改直至达到算法终止条件。

如果通过对学生进行分类能提高教育水平,那自然是同意的拉,但若会引起对学生的不平等对待,希望不会造成这样的结果

本人应该属于迷茫无目标型


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值