There are N gas stations along a circular route, where the amount of gas at station i is gas[i]
.
You have a car with an unlimited gas tank and it costs cost[i]
of gas to travel from station i to its next station (i+1). You begin the journey with an empty tank at one of the gas stations.
Return the starting gas station's index if you can travel around the circuit once, otherwise return -1.
题意:n个加油站分布在一个环形的跑道内,每个加油站可以加gas[i],假设只能顺时针跑,每个加油站到下一个加油站需要耗掉cost[i],开始时车的油箱没有油,找到那个可以作为起点的加油站可以让这辆车沿着这条跑道跑一圈。
解析:先宏观的思考下,要想跑完一圈,起码要保证Sum(gas) >=Sum(cost),不能满足这条,肯定跑不完。如果满足这条,是不是一定存在满足条件的起点呢?
假设Sum(gas) ==Sum(cost),从0号开始,到达第i个节点,总加油量为Sum[i],总耗油量为Total[i],每到一个加油站k检查Sum[k]是否不小于Total[k],如果出现油量不足的情况,则说明从当前的0号开始达到不了k+1号,要想到达k+1号加油站还需要diff[k] = Total[k]-Sum[k]的油量,因此第0号加油站不能当作起点;然后以k+1号为起点,同样记录相对于当前起点k+1的Sum和Total,可能又出现了一个加油站k1,Sum[k1]<Total[k1],此时说明从k+1开始到达不了k1+1,还需要diff[k1] = Total[k1]-Sum[k1]的油量,往后还有可能出现k2,k3等情况,分别少了diff[k2],diff[k3] 的油量,但是无论有多少这样的加油站出现,总会存在一个加油站km,从km可以到达最有一个加油站n,且还剩余油量,因为Sum(gas) == Sum(cost),所以剩余的油量也能算出来,即diff[k]+diff[k1]+diff[k2]+….,如果以第km个加油站作为起点,跑到第n个加油站,因为环形跑道的原因,接下来就是第0个加油站,那么以车现在的剩余油量,可以弥补掉从0到km所少的油量,即跑完了一整圈。
代码实现:
public class Solution
{
public int CanCompleteCircuit(int[] gas, int[] cost)
{
int dif = 0;//记录总的加油量和总耗油量的差
if (gas.Length == 0 || cost.Length == 0 || gas.Length != cost.Length) return -1;
int start = 0;//记录当前哪个加油站为起点
int sum = 0;//记录相对于当前的起点加油站总的加油量
int total = 0;//记录相对于当前的起点加油站总的耗油量
for (int i = 0; i < gas.Length; ++i)
{
sum += gas[i];
total += cost[i];
if (sum < total)//相对于当前起点的总加油量小于总耗油量时,需要说明达到不了加油站i+1,需要重置sum,total,和start
{
start = i + 1;
sum = 0;
total = 0;
}
dif += gas[i] - cost[i];
}
if (dif >= 0) return start;
else return -1;
}
}