Leetcode-134-Gas Station C#

该博客介绍了LeetCode中的134题——Gas Station问题,内容涉及如何解决在环形跑道上找到能行驶一圈的起点加油站的问题。博主首先分析了问题的条件,指出总加油量必须大于等于总消耗量,然后提出了检查每个加油站是否能作为起点的策略。通过举例解释了如何处理油量不足的情况,并最终给出了C#代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

There are N gas stations along a circular route, where the amount of gas at station i is gas[i].

You have a car with an unlimited gas tank and it costs cost[i] of gas to travel from station i to its next station (i+1). You begin the journey with an empty tank at one of the gas stations.

Return the starting gas station's index if you can travel around the circuit once, otherwise return -1. 

题意:n个加油站分布在一个环形的跑道内,每个加油站可以加gas[i],假设只能顺时针跑,每个加油站到下一个加油站需要耗掉cost[i],开始时车的油箱没有油,找到那个可以作为起点的加油站可以让这辆车沿着这条跑道跑一圈。

解析:先宏观的思考下,要想跑完一圈,起码要保证Sum(gas) >=Sum(cost),不能满足这条,肯定跑不完。如果满足这条,是不是一定存在满足条件的起点呢?

假设Sum(gas) ==Sum(cost),从0号开始,到达第i个节点,总加油量为Sum[i],总耗油量为Total[i],每到一个加油站k检查Sum[k]是否不小于Total[k],如果出现油量不足的情况,则说明从当前的0号开始达到不了k+1号,要想到达k+1号加油站还需要diff[k] = Total[k]-Sum[k]的油量,因此第0号加油站不能当作起点;然后以k+1号为起点,同样记录相对于当前起点k+1SumTotal,可能又出现了一个加油站k1Sum[k1]<Total[k1],此时说明从k+1开始到达不了k1+1,还需要diff[k1] = Total[k1]-Sum[k1]的油量,往后还有可能出现k2k3等情况,分别少了diff[k2],diff[k3] 的油量,但是无论有多少这样的加油站出现,总会存在一个加油站km,从km可以到达最有一个加油站n,且还剩余油量,因为Sum(gas) == Sum(cost),所以剩余的油量也能算出来,即diff[k]+diff[k1]+diff[k2]+….,如果以第km个加油站作为起点,跑到第n个加油站,因为环形跑道的原因,接下来就是第0个加油站,那么以车现在的剩余油量,可以弥补掉从0km所少的油量,即跑完了一整圈。

代码实现:

 public class Solution
    {
        public int CanCompleteCircuit(int[] gas, int[] cost)
        {
            int dif = 0;//记录总的加油量和总耗油量的差
            if (gas.Length == 0 || cost.Length == 0 || gas.Length != cost.Length) return -1;
            int start = 0;//记录当前哪个加油站为起点    
            int sum = 0;//记录相对于当前的起点加油站总的加油量
            int total = 0;//记录相对于当前的起点加油站总的耗油量
            for (int i = 0; i < gas.Length; ++i)
            {
                sum += gas[i];
                total += cost[i];
                if (sum < total)//相对于当前起点的总加油量小于总耗油量时,需要说明达到不了加油站i+1,需要重置sum,total,和start
                {
                    start = i + 1;
                    sum = 0;
                    total = 0;
                }
                dif += gas[i] - cost[i];
            }
            if (dif >= 0) return start;
            else return -1;
        }
    }



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值