HashMap的基本结构
HashMap是基于哈希表的键值对存储类,它通过将键值对包装成Entry,然后根据键的hash值确定保存的位置。下面我们先看HashMap里几个重要的类与变量。
Entry类
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
Node<K,V> next;
Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
public final K getKey() { return key; }
public final V getValue() { return value; }
public final String toString() { return key + "=" + value; }
public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
}
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
public final boolean equals(Object o) {
if (o == this)
return true;
if (o instanceof Map.Entry) {
Map.Entry<?,?> e = (Map.Entry<?,?>)o;
if (Objects.equals(key, e.getKey()) &&
Objects.equals(value, e.getValue()))
return true;
}
return false;
}
}
保存在HashMap里的数据都会被封装成这个类的对象,可以看到他是一个单链表,在HashMap里,同一个链表里面保存的Node的键的哈希值是相同的,也就是说这个链表是为了解决hash冲突的。
数据保存的对象
transient Node<K,V>[] table;
HashMap的数据就是保存在这个数组里,而数组的每一个位置都对应着一个哈希函数的值,而每个位置存放着一个链表,个类的对象,可以看到他是一个单链表,在HashMap里,同一个链表里面保存的Node的键的哈希值是相同的。
容量和加载因子
int threshold;//容量
final float loadFactor;//加载因子
这两个参数是来度量当前的HashMap是否需要扩容的,有如下算式:
threshold=槽位数(也就是table.length)x loadFactor;
可以看到loadFactor是是final的,也就是对于一个HashMap对象,其的加载因子是确定且不可改变的的。加载因子的默认值是0.75,也就是说在默认情况下,当table数组长度为16时,链表最多保存12个键值对。
HashMap的put与get
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
将数据放到HashMap里面,会先调用函数计算出哈希值
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
注意,这个函数的返回值不是哈希表概念下的哈希值,而是(n - 1) & hash,其中n是当前table数组的长度,由于数组的长度一定是2的指数,所以相当于是去算出来的hash对n的余数。
put方法就是根据key的哈希值,算出存放的位置,然后取到对应的链表,最后将键值对放入链表。
当然他还会判断是否超出容量,选择resize,根据链表的长度,将链表转化为红黑树,加快hash碰撞太多导致的HashMap的性能降低。
public V get(Object key) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
if ((e = first.next) != null) {
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
get方法也是先算出hash值找到链表,然后再链表里面找到具体的Node,然后返回。
HashMap的ReHash
注意,每次扩容均是将table的长度乘以2
final Node<K,V>[] resize() {
//省略一些修改容量的代码
...
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
当扩容两倍的时候,原来链表的数据在新的结构里分属两个链表,比如长度为16时余数3对应的链表,再扩容为32的时候,那个链表的数据会分别属于余数3对应的链表以及余数19对应的链表,如此就很容易看懂链表的分离了。
LinkedHashMap的有序的实现方式
我们将数据添加到HashMap后,对其遍历的时候是不保证顺序的,如果要保证顺序,就要使用LinkedHashMap,那么他是如何实现有序的呢?
首先我们看HashMap的遍历方式,这是其遍历的核心类:
abstract class HashIterator {
Node<K,V> next; // next entry to return
Node<K,V> current; // current entry
int expectedModCount; // for fast-fail
int index; // current slot
HashIterator() {
expectedModCount = modCount;
Node<K,V>[] t = table;
current = next = null;
index = 0;
if (t != null && size > 0) { // advance to first entry
do {} while (index < t.length && (next = t[index++]) == null);
}
}
public final boolean hasNext() {
return next != null;
}
final Node<K,V> nextNode() {
Node<K,V>[] t;
Node<K,V> e = next;
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
if (e == null)
throw new NoSuchElementException();
if ((next = (current = e).next) == null && (t = table) != null) {
do {} while (index < t.length && (next = t[index++]) == null);
}
return e;
}
public final void remove() {
Node<K,V> p = current;
if (p == null)
throw new IllegalStateException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
current = null;
removeNode(p.hash, p.key, null, false, false);
expectedModCount = modCount;
}
}
当我们对HashMap遍历的时候实际上就是调用nextNode(),核心代码是该行:
if ((next = (current = e).next) == null && (t = table) != null) {
do {} while (index < t.length && (next = t[index++]) == null);
}
他实现的是先沿着链表往后遍历,如果找到的为空,那么就沿着table的下表往后遍历,找下一个非空链表返回。
所以HashMap实质是按照hash值来遍历的。
而对于LinkedHashMap,他先对Node对象进行继承,添加了两个属性:
static class Entry<K,V> extends HashMap.Node<K,V> {
Entry<K,V> before, after;
Entry(int hash, K key, V value, Node<K,V> next) {
super(hash, key, value, next);
}
}
这就使LinkedHashMap的Entry成了三向链表。。。
abstract class LinkedHashIterator {
LinkedHashMap.Entry<K,V> next;
LinkedHashMap.Entry<K,V> current;
int expectedModCount;
LinkedHashIterator() {
next = head;
expectedModCount = modCount;
current = null;
}
public final boolean hasNext() {
return next != null;
}
final LinkedHashMap.Entry<K,V> nextNode() {
LinkedHashMap.Entry<K,V> e = next;
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
if (e == null)
throw new NoSuchElementException();
current = e;
next = e.after;
return e;
}
public final void remove() {
Node<K,V> p = current;
if (p == null)
throw new IllegalStateException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
current = null;
removeNode(p.hash, p.key, null, false, false);
expectedModCount = modCount;
}
}
可以看到他是使用after和before两个属性来完成的遍历,这里我们能够猜到LinkedHashMap使用after和before两个属性,将所有添加的键值对组成了一个双向链表,自然就是有序的了。
那么他如何在添加的时候将其组成链表的呢?
我们发现他并没有重写put方法,其实他是通过如下方法的重写来实现的:
Node<K,V> newNode(int hash, K key, V value, Node<K,V> e) {
LinkedHashMap.Entry<K,V> p =
new LinkedHashMap.Entry<>(hash, key, value, e);
linkNodeLast(p);
return p;
}
这是HashMap创建节点的方法,LinkedHashMap重写后,实现了将当前加入的Node添加到上一个Node的后面。
所以LinkedHashMap做到了按添加顺序来遍历(他也可以设置accessOrder属性,达到根据读取的key,来将读取的键值对的位置放到双链表的最后,也就是遍历顺序最后)。