题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5329
题目大意:n个点n条边的联通图,无自环,无重边,把所有点拆分成n/k个k个点的集合,k整除n,使得集合内的点两两路径上的点都在集合内。问有多少个k满足这个条件。n<1e5
解题思路:对于一棵树来说,如果能够分成n/k个k个点的集合,那么任取一个点为根,所有子树的节点个数是k的倍数有n/k个,应该比较好理解,画一个图就知道了:前提是一棵树,并且能够分成n/k个k个点的集合,那么,你选的根一定只属于某一个集合,对其他的集合并没有破坏!所以有n/k个子树的节点的个数是k的倍数 是显然的了。
我们可以考虑将原来的环加外向树,给环上的点标号为1..m,拆掉1 和 m的边,使其变为一棵以1为根的树,然后变成了求这棵树有多少个子树的节点个数是k的倍数,对于不是圆环上的点,由于他们的结构不会改变,我们可以事先统计出来,对于圆环上的点,节点i的子树的节点个数,都是sigma(s i..m)si表示节点i的子树的节点个数 不包括圆环上的节点。记录一个s的前缀和,sigma(s i..m)=a[m]-a[i-1],对于a数组模k, 如果a[m]-a[i-1]是k的倍数 当且仅当 a[m]=a[i-1] 由于a[m]%k=0,所以需要统计 a[0...m-1]中0的个数,用cnt[i]b表示i出现的次数。顺次的枚举拆掉哪条边,更新cnt数组,求得最大的出现个数,加上预处理的是k的倍数的节点的个数,看是不是等于n/k,加到答案里面
#pragma comment(linker,"/STACK:102400000,102400000")
#include<stdio.h>
#include<iostream>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<string>
#define ll long long
#define db double
#define PB push_back
#define lson k<<1
#define rson k<<1|1
using namespace std;
const int N = 100005;
int head[N], nxt[N << 1], to[N << 1], nedge;
bool on[N];
int c[N], num[N], sz[N];
void init(int n)
{
for(int i = 1; i <= n; i++) head[i] = -1, on[i] = false, sz[i] = 0;
nedge = 0;
}
void addedge(int u, int v)
{
to[nedge] = v, nxt[nedge] = head[u], head[u] = nedge++;
}
bool oncir;
int st, lc;
void dfs(int k, int fa)
{
on[k] = true;
for(int i = head[k]; i >= 0; i = nxt[i])
{
if(to[i] != fa)
{
if(on[to[i]])
{
c[++lc] = k;
oncir = true;
st = to[i];
return;
}
else
{
dfs(to[i], k);
if(oncir) break;
}
}
}
if(oncir) c[++lc] = k;
on[k] = oncir;
if(k == st) oncir = false;
}
int cnt[N];
int calc(int k)
{
for(int i = 0; i < k; i++) cnt[i] = 0;
int s(0);
for(int i = 0; i < lc; i++)
{
s += num[c[i]];
s %= k;
cnt[s]++;
}
int p(0);
int res(cnt[p]);
for(int i = lc; i > 1; i--)
{
p = ((p - num[c[i]]) % k + k) % k;
res = max(res, cnt[p]);
}
return res;
}
void getK(int k, int fa)
{
num[k] = 1;
for(int i = head[k]; i >= 0; i = nxt[i])
{
if(to[i] != fa && !on[to[i]])
{
getK(to[i], k);
num[k] += num[to[i]];
}
}
if(fa) sz[num[k]]++;
}
void sum()
{
for(int i = 1; i <= lc; i++)
{
getK(c[i], 0);
}
}
int gets(int k,int n)
{
int res(0);
for(int i=k;i<=n;i+=k)
res+=sz[i];
return res;
}
int main()
{
#ifdef PKWV
freopen("in.in", "r", stdin);
// freopen("1003.k.out","w",stdout);
#endif // PKWV
int n;
while(scanf("%d", &n) + 1)
{
init(n);
for(int i = 1; i <= n; i++)
{
int v;
scanf("%d", &v);
addedge(i, v), addedge(v, i);
}
oncir = false, lc = 0;
dfs(1, 0);
sum();
int ans(0);
for(int i = 1; i * i <= n; i++)
{
if(n % i == 0)
{
if(gets(i,n) + calc(i) == n / i)
{
ans++;
}
if(i != n / i)
{
if(gets(n / i,n) + calc(n / i) == i)
{
ans++;
}
}
}
}
printf("%d\n", ans);
}
return 0;
}