【DSP C++】2D_FFT

#include <stdio.h>
#include <stdlib.h>
#include <math.h>


#define intsize sizeof(int)
#define complexsize sizeof(complex)
#define PI 3.1415926


int *a,*b;
int nLen,init_nLen,mLen,init_mLen,N,M;//init_nLen,init_mLen:原始图像的大小、N,M:dft变换应该是2的几次方、nLen,mLen:dft的点数
FILE *dataFile;


typedef struct{
    float real;
    float image;
}complex;


complex *A,*A_In,*W;//A_In:dft的原矩阵,不够的补0


complex Add(complex, complex);
complex Sub(complex, complex);
complex Mul(complex, complex);
int calculate_M(int);//计算dft的点数应为2的N次方、
void reverse(int,int);
void readData();    //读入原矩阵数据,并补零转化为可以计算dft的矩阵、
void fft(int,int);
void Ifft();
void printResult_fft();
void printResult_Ifft();


int main()
{
    int i,j;
    readData();
    A = (complex *)malloc(complexsize*nLen);
    reverse(nLen,N);
    for(i=0; i<mLen; i++)
    {
        for(j=0; j<nLen; j++)
        {
            A[j].real = A_In[i*nLen+b[j]].real;
            A[j].image = A_In[i*nLen+b[j]].image;
        }
        
        fft(nLen,N);
        for(j=0; j<nLen; j++)
        {
            A_In[i*nLen+j].real = A[j].real;
            A_In[i*nLen+j].image = A[j].image;
        }
    }


    free(a);
    free(b);
    free(A);


    A = (complex *)malloc(complexsize*mLen);
    reverse(mLen,M);
    for(i=0; i<nLen; i++)
    {
        for(j=0; j<mLen; j++)
        {
            A[j].real = A_In[b[j]*nLen+i].real;
            A[j].image = A_In[b[j]*nLen+i].image;
        }


        fft(mLen,M);
        for(j=0; j<mLen; j++)
        {
            A_In[j*nLen+i].real = A[j].real;
            A_In[j*nLen+i].image = A[j].image;
        }
    }
    free(A);
    printResult_fft();
    Ifft();
    printResult_Ifft();
    return 0;
}


void readData()
{
     int i,j;


     dataFile = fopen("dataIn.txt","r");
     fscanf(dataFile,"%d %d",&init_mLen,&init_nLen);
     M = calculate_M(init_mLen);
     N = calculate_M(init_nLen);
     nLen = (int)pow(2,N);
     mLen = (int)pow(2,M);
     A_In = (complex *)malloc(complexsize*nLen*mLen);


     for(i=0; i<init_mLen; i++)
     {
         for(j=0; j<init_nLen; j++)
         {
             fscanf(dataFile,"%f",&A_In[i*nLen+j].real);
             A_In[i*nLen+j].image = 0.0;
         }
     }
     fclose(dataFile);


     for(i=0; i<mLen; i++)
     {
         for(j=init_nLen; j<nLen; j++)
         {
             A_In[i*nLen+j].real = 0.0;
             A_In[i*nLen+j].image = 0.0;
         }
     }


     for(i=init_mLen; i<mLen; i++)
     {
         for(j=0; j<init_nLen; j++)
         {
             A_In[i*nLen+j].real = 0.0;
             A_In[i*nLen+j].image = 0.0;
         }
     }


     printf("Reading initial datas:\n");
     for(i=0; i<init_mLen; i++)
     {
         for(j=0; j<init_nLen; j++)
         {
             if(A_In[i*nLen+j].image < 0)
             { 
                 printf("%f%fi\t",A_In[i*nLen+j].real,A_In[i*nLen+j].image);
             }
             else
             {
                 printf("%f+%fi\t",A_In[i*nLen+j].real,A_In[i*nLen+j].image);
             }
         }
         printf("\n");
     }
  
     printf("\n");
  
     printf("Reading formal datas:\n");
     for(i=0; i<mLen; i++)
     {
         for(j=0; j<nLen; j++)
         {
             if(A_In[i*nLen+j].image < 0)
             { 
                 printf("%f%fi\t",A_In[i*nLen+j].real,A_In[i*nLen+j].image);
             }
             else
             {
                 printf("%f+%fi\t",A_In[i*nLen+j].real,A_In[i*nLen+j].image);
             }
         }
         printf("\n");
     }
}




void fft(int fft_nLen, int fft_M)
{
     int i;
     int lev,dist,p,t;
     complex B;


     W = (complex *)malloc(complexsize*fft_nLen/2);


     for(lev=1; lev<=fft_M; lev++)
     {
         dist = (int)pow(2,lev-1);
         for(t=0; t<dist; t++)
         {
             p = t*(int)pow(2,fft_M-lev);
             W[p].real = (float)cos(2*PI*p/fft_nLen);
             W[p].image = (float)(-1*sin(2*PI*p/fft_nLen));
             for(i=t; i<fft_nLen; i=i+(int)pow(2,lev))
             {
                 B = Add(A[i],Mul(A[i+dist],W[p]));
                 A[i+dist] = Sub(A[i],Mul(A[i+dist],W[p]));
                 A[i].real = B.real;
                 A[i].image = B.image;
             }
         }
     }


     free(W);
}




void printResult_fft()
{
     int i,j;
 
     printf("Output FFT results:\n");
     for(i=0; i<mLen; i++)
     {
         for(j=0; j<nLen; j++)
         {
             if(A_In[i*nLen+j].image < 0)
             {
                 printf("%f%fi\t",A_In[i*nLen+j].real,A_In[i*nLen+j].image);
             }
             else
             {
                 printf("%f+%fi\t",A_In[i*nLen+j].real,A_In[i*nLen+j].image);
             }
         }
         printf("\n");
     }
}


void printResult_Ifft()
{
     int i,j;
 
     printf("Output IFFT results:\n");
     for(i=0; i<mLen; i++)
     {
         for(j=0; j<nLen; j++)
         {
             if(A_In[i*nLen+j].image < 0)
             {
                 printf("%f%fi\t",A_In[i*nLen+j].real,A_In[i*nLen+j].image);
             }
             else
             {
                 printf("%f+%fi\t",A_In[i*nLen+j].real,A_In[i*nLen+j].image);
             }
         }
         printf("\n");
     }
 
     free(A_In);
}


int calculate_M(int len)
{
    int i;
    int k;
 
    i = 0;
    k = 1;
    while(k < len)
    {
        k = k*2;
        i++;
    }
 
    return i;
}


void reverse(int len, int M)
{
    int i,j;
 
    a = (int *)malloc(intsize*M);
    b = (int *)malloc(intsize*len);
 
    for(i=0; i<M; i++)
    {
        a[i] = 0;
    }
 
    b[0] = 0;
    for(i=1; i<len; i++)
    {
        j = 0;
        while(a[j] != 0)
        {
            a[j] = 0;
            j++;
        }
  
        a[j] = 1;
        b[i] = 0;
        for(j=0; j<M; j++)
        {
            b[i] = b[i]+a[j]*(int)pow(2,M-1-j);
        }
    }
}


complex Add(complex c1, complex c2)
{
    complex c;
    c.real = c1.real+c2.real;
    c.image = c1.image+c2.image;
    return c;
}


complex Sub(complex c1, complex c2)
{
    complex c;
    c.real = c1.real-c2.real;
    c.image = c1.image-c2.image;
    return c;
}


complex Mul(complex c1, complex c2)
{
    complex c;
    c.real = c1.real*c2.real-c1.image*c2.image;
    c.image = c1.real*c2.image+c2.real*c1.image;
    return c;
}


void Ifft()
{
    int i,j;
 
    for(i=0; i<mLen; i++)
    {
        for(j=0; j<nLen; j++)
        {
            A_In[i*nLen+j].image = -A_In[i*nLen+j].image;
        }
    }
 
    A = (complex *)malloc(complexsize*nLen);
    reverse(nLen,N);
    for(i=0; i<mLen; i++)
    {
        for(j=0; j<nLen; j++)
        {
            A[j].real = A_In[i*nLen+b[j]].real;
            A[j].image = A_In[i*nLen+b[j]].image;  
        }


        fft(nLen,N);
        for(j=0; j<nLen; j++)
        {   
            A_In[i*nLen+j].real = A[j].real/nLen;
            A_In[i*nLen+j].image = A[j].image/nLen;
        }
    }
    free(A);
    free(a);
    free(b);
 
    A = (complex *)malloc(complexsize*mLen);
    reverse(mLen,M);
    for(i=0; i<nLen; i++)
    {
        for(j=0; j<mLen; j++)
        {
            A[j].real = A_In[b[j]*nLen+i].real;
            A[j].image = A_In[b[j]*nLen+i].image;
        }


        fft(mLen,M);
        for(j=0; j<mLen; j++)
        {
            A_In[j*nLen+i].real = A[j].real/mLen;
            A_In[j*nLen+i].image = A[j].image/mLen;
        }
    }
    free(A);
    free(a);
    free(b);
}


测试数据及结果如下:


数据输入文件data_In.txt的内容如下:


3 3
1 2 5  
3 2 5 
5 6 4


测试结果如下:


Reading initial datas:
1.000000+0.000000i   2.000000+0.000000i   5.000000+0.000000i
3.000000+0.000000i   2.000000+0.000000i   5.000000+0.000000i
5.000000+0.000000i   6.000000+0.000000i   4.000000+0.000000i


Reading formal datas:
1.000000+0.000000i   2.000000+0.000000i   5.000000+0.000000i   0.000000+0.000000i
3.000000+0.000000i   2.000000+0.000000i   5.000000+0.000000i   0.000000+0.000000i
5.000000+0.000000i   6.000000+0.000000i   4.000000+0.000000i   0.000000+0.000000i
0.000000+0.000000i   0.000000+0.000000i   0.000000+0.000000i   0.000000+0.000000i
Output FFT results:
33.000000+0.000000i   -5.000000-10.000000i   13.000000+0.000000i   -5.000000+10.000000i
-7.000000-10.000000i  -7.000000+6.000000i    1.000000-6.000000i    -3.000000-2.000000i
13.000000+0.000000i   -1.000000-6.000000i    1.000000+0.000000i    -1.000000+6.000000i
-7.000000+10.000000i  -3.000000+2.000000i    1.000000+6.000000i    -7.000000-6.000000i
Output IFFT results:
1.000000+0.000000i   2.000000+0.000000i   5.000000+0.000000i   0.000000-0.000000i
3.000000+0.000000i   2.000000+0.000000i   5.000000+0.000000i   0.000000-0.000000i
5.000000+0.000000i   6.000000+0.000000i   4.000000+0.000000i   -0.000000-0.000000i
0.000000-0.000000i   0.000000+0.000000i   0.000000-0.000000i   -0.000000+0.000000i


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值