首先回到DefaultMQPushConsumerImpl start方法
public synchronized void start() throws MQClientException {
switch(this.serviceState) {
case CREATE_JUST:
this.log.info("the consumer [{}] start beginning. messageModel={}, isUnitMode={}", new Object[]{this.defaultMQPushConsumer.getConsumerGroup(), this.defaultMQPushConsumer.getMessageModel(), this.defaultMQPushConsumer.isUnitMode()});
this.serviceState = ServiceState.START_FAILED;
this.checkConfig();
this.copySubscription();
if (this.defaultMQPushConsumer.getMessageModel() == MessageModel.CLUSTERING) {
this.defaultMQPushConsumer.changeInstanceNameToPID();
}
this.mQClientFactory = MQClientManager.getInstance().getAndCreateMQClientInstance(this.defaultMQPushConsumer, this.rpcHook);
this.rebalanceImpl.setConsumerGroup(this.defaultMQPushConsumer.getConsumerGroup());
this.rebalanceImpl.setMessageModel(this.defaultMQPushConsumer.getMessageModel());
this.rebalanceImpl.setAllocateMessageQueueStrategy(this.defaultMQPushConsumer.getAllocateMessageQueueStrategy());
this.rebalanceImpl.setmQClientFactory(this.mQClientFactory);
this.pullAPIWrapper = new PullAPIWrapper(this.mQClientFactory, this.defaultMQPushConsumer.getConsumerGroup(), this.isUnitMode());
this.pullAPIWrapper.registerFilterMessageHook(this.filterMessageHookList);
if (this.defaultMQPushConsumer.getOffsetStore() != null) {
this.offsetStore = this.defaultMQPushConsumer.getOffsetStore();
} else {
switch(this.defaultMQPushConsumer.getMessageModel()) {
case BROADCASTING:
this.offsetStore = new LocalFileOffsetStore(this.mQClientFactory, this.defaultMQPushConsumer.getConsumerGroup());
break;
case CLUSTERING:
this.offsetStore = new RemoteBrokerOffsetStore(this.mQClientFactory, this.defaultMQPushConsumer.getConsumerGroup());
}
this.defaultMQPushConsumer.setOffsetStore(this.offsetStore);
}
this.offsetStore.load();
if (this.getMessageListenerInner() instanceof MessageListenerOrderly) {
this.consumeOrderly = true;
this.consumeMessageService = new ConsumeMessageOrderlyService(this, (MessageListenerOrderly)this.getMessageListenerInner());
} else if (this.getMessageListenerInner() instanceof MessageListenerConcurrently) {
this.consumeOrderly = false;
this.consumeMessageService = new ConsumeMessageConcurrentlyService(this, (MessageListenerConcurrently)this.getMessageListenerInner());
}
this.consumeMessageService.start();
boolean registerOK = this.mQClientFactory.registerConsumer(this.defaultMQPushConsumer.getConsumerGroup(), this);
if (!registerOK) {
this.serviceState = ServiceState.CREATE_JUST;
this.consumeMessageService.shutdown();
throw new MQClientException("The consumer group[" + this.defaultMQPushConsumer.getConsumerGroup() + "] has been created before, specify another name please." + FAQUrl.suggestTodo("http://rocketmq.apache.org/docs/faq/"), (Throwable)null);
} else {
this.mQClientFactory.start();
this.log.info("the consumer [{}] start OK.", this.defaultMQPushConsumer.getConsumerGroup());
this.serviceState = ServiceState.RUNNING;
}
default:
this.updateTopicSubscribeInfoWhenSubscriptionChanged();
this.mQClientFactory.checkClientInBroker();
this.mQClientFactory.sendHeartbeatToAllBrokerWithLock();
this.mQClientFactory.rebalanceImmediately();
return;
case RUNNING:
case SHUTDOWN_ALREADY:
case START_FAILED:
throw new MQClientException("The PushConsumer service state not OK, maybe started once, " + this.serviceState + FAQUrl.suggestTodo("http://rocketmq.apache.org/docs/faq/"), (Throwable)null);
}
}
这里主要分析
this.consumeMessageService = new ConsumeMessageConcurrentlyService(this, (MessageListenerConcurrently)this.getMessageListenerInner());
先看下consumeMessageService的构造函数
public ConsumeMessageConcurrentlyService(DefaultMQPushConsumerImpl defaultMQPushConsumerImpl,
MessageListenerConcurrently messageListener) {
this.defaultMQPushConsumerImpl = defaultMQPushConsumerImpl;
this.messageListener = messageListener;
this.defaultMQPushConsumer = this.defaultMQPushConsumerImpl.getDefaultMQPushConsumer();
this.consumerGroup = this.defaultMQPushConsumer.getConsumerGroup();
this.consumeRequestQueue = new LinkedBlockingQueue<Runnable>();
this.consumeExecutor = new ThreadPoolExecutor(
//线程池的常驻线程数:consumeThreadMin
this.defaultMQPushConsumer.getConsumeThreadMin(),
//线程池的最大线程数:consumeThreadMax
this.defaultMQPushConsumer.getConsumeThreadMax(),
1000 * 60,
TimeUnit.MILLISECONDS,
this.consumeRequestQueue,
//线程池中的线程名:ConsumeMessageThread_
new ThreadFactoryImpl("ConsumeMessageThread_"));
this.scheduledExecutorService = Executors.newSingleThreadScheduledExecutor(new ThreadFactoryImpl("ConsumeMessageScheduledThread_"));
this.cleanExpireMsgExecutors = Executors.newSingleThreadScheduledExecutor(new ThreadFactoryImpl("CleanExpireMsgScheduledThread_"));
}
在这个构造函数中,new了一个名字叫consumeExecutor的线程池,在并发消费的模式下,这个线程池也就是消费消息的方式,我们先回到消息消费的入口处,我们上篇(一)中也提到了在回调函数中
//消费消息服务提交
DefaultMQPushConsumerImpl.this.consumeMessageService.submitConsumeRequest(
pullResult.getMsgFoundList(),
processQueue,
pullRequest.getMessageQueue(),
dispatchToConsume);
把拉取到的消息(默认为32条)提交到consumeMessageService中,进入submitConsumeRequest方法:
final int consumeBatchSize = this.defaultMQPushConsumer.getConsumeMessageBatchMaxSize();
if (msgs.size() <= consumeBatchSize) {
ConsumeRequest consumeRequest = new ConsumeRequest(msgs, processQueue, messageQueue);
try {
//consumeExecutor : 消费端消费线程池
this.consumeExecutor.submit(consumeRequest);
} catch (RejectedExecutionException e) {
this.submitConsumeRequestLater(consumeRequest);
}
}
第一步:获取默认的处理大小,一直觉得这个字段的命名有点歧义,这个字段是用来处理消费端每次消费消息的条数,不是从broker端拉取过来的消息的条数
第二步:判断从broker拉取过来的消息是否大于consumeBatchSize,一般consumeBatchSize都设置为1,默认值也是1,下面直接去看else逻辑
for (int total = 0; total < msgs.size(); ) {
List<MessageExt> msgThis = new ArrayList<MessageExt>(consumeBatchSize);
for (int i = 0; i < consumeBatchSize; i++, total++) {
if (total < msgs.size()) {
msgThis.add(msgs.get(total));
} else {
break;
}
}
ConsumeRequest consumeRequest = new ConsumeRequest(msgThis, processQueue, messageQueue);
try {
this.consumeExecutor.submit(consumeRequest);
} catch (RejectedExecutionException e) {
for (; total < msgs.size(); total++) {
msgThis.add(msgs.get(total));
}
this.submitConsumeRequestLater(consumeRequest);
}
}
把消息按照consumeBatchSize分组,组装成ConsumeRequest对象,提交到consumeExecutor线程池中,我们看下ConsumeRequest的run方法
public void run() {
if (this.processQueue.isDropped()) {
log.info("the message queue not be able to consume, because it's dropped. group={} {}", ConsumeMessageConcurrentlyService.this.consumerGroup, this.messageQueue);
return;
}
第一步:判断processQueue的dropped属性,这个属性在负载均衡中会处理,判断需不需要继续消费这个processQueue拉取到的消息
MessageListenerConcurrently listener = ConsumeMessageConcurrentlyService.this.messageListener;
ConsumeConcurrentlyContext context = new ConsumeConcurrentlyContext(messageQueue);
ConsumeConcurrentlyStatus status = null;
第二步:拿到业务系统定义的消息监听listener
ConsumeMessageContext consumeMessageContext = null;
if (ConsumeMessageConcurrentlyService.this.defaultMQPushConsumerImpl.hasHook()) {
consumeMessageContext = new ConsumeMessageContext();
consumeMessageContext.setConsumerGroup(defaultMQPushConsumer.getConsumerGroup());
consumeMessageContext.setProps(new HashMap<String, String>());
consumeMessageContext.setMq(messageQueue);
consumeMessageContext.setMsgList(msgs);
consumeMessageContext.setSuccess(false);
ConsumeMessageConcurrentlyService.this.defaultMQPushConsumerImpl.executeHookBefore(consumeMessageContext);
}
第三步:判断是否有钩子函数,执行before方法
//设置消息的重试主题,并开始消费消息,并返回该批次消息消费结果:
long beginTimestamp = System.currentTimeMillis();
boolean hasException = false;
ConsumeReturnType returnType = ConsumeReturnType.SUCCESS;
try {
ConsumeMessageConcurrentlyService.this.resetRetryTopic(msgs);
if (msgs != null && !msgs.isEmpty()) {
for (MessageExt msg : msgs) {
MessageAccessor.setConsumeStartTimeStamp(msg, String.valueOf(System.currentTimeMillis()));
}
}
status = listener.consumeMessage(Collections.unmodifiableList(msgs), context);
} catch (Throwable e) {
log.warn("consumeMessage exception: {} Group: {} Msgs: {} MQ: {}",
RemotingHelper.exceptionSimpleDesc(e),
ConsumeMessageConcurrentlyService.this.consumerGroup,
msgs,
messageQueue);
hasException = true;
}
第四步:调用resetRetryTopic方法设置消息的重试主题
第五步:执行listener.consumeMessage,业务系统具体去消费消息,如果消费成功那么返回status返回CONSUME_SUCCESS,如果有异常想重试,那么返回RECONSUME_LATER
if (ConsumeMessageConcurrentlyService.this.defaultMQPushConsumerImpl.hasHook()) {
consumeMessageContext.setStatus(status.toString());
consumeMessageContext.setSuccess(ConsumeConcurrentlyStatus.CONSUME_SUCCESS == status);
ConsumeMessageConcurrentlyService.this.defaultMQPushConsumerImpl.executeHookAfter(consumeMessageContext);
}
第六步:执行钩子函数after方法
//对消费结果的处理
if (!processQueue.isDropped()) {
ConsumeMessageConcurrentlyService.this.processConsumeResult(status, context, this);
} else {
log.warn("processQueue is dropped without process consume result. messageQueue={}, msgs={}", messageQueue, msgs);
}
第七步:processConsumeResult来对消费结果进行处理,进入processConsumeResult方法
int ackIndex = context.getAckIndex();
if (consumeRequest.getMsgs().isEmpty())
return;
switch (status) {
case CONSUME_SUCCESS:
if (ackIndex >= consumeRequest.getMsgs().size()) {
ackIndex = consumeRequest.getMsgs().size() - 1;
}
int ok = ackIndex + 1;
int failed = consumeRequest.getMsgs().size() - ok;
this.getConsumerStatsManager().incConsumeOKTPS(consumerGroup, consumeRequest.getMessageQueue().getTopic(), ok);
this.getConsumerStatsManager().incConsumeFailedTPS(consumerGroup, consumeRequest.getMessageQueue().getTopic(), failed);
break;
case RECONSUME_LATER:
ackIndex = -1;
this.getConsumerStatsManager().incConsumeFailedTPS(consumerGroup, consumeRequest.getMessageQueue().getTopic(),
consumeRequest.getMsgs().size());
break;
default:
break;
}
第八步:定义了ackIndex,这个值初始化等于Integer.MAX_VALUE,如果返回成功,那么ackIndex=消息数-1,如果返回失败ackIndex=-1
case CLUSTERING:
//集群模式下
List<MessageExt> msgBackFailed = new ArrayList<MessageExt>(consumeRequest.getMsgs().size());
for (int i = ackIndex + 1; i < consumeRequest.getMsgs().size(); i++) {
MessageExt msg = consumeRequest.getMsgs().get(i);
//发送sendMessageBack
boolean result = this.sendMessageBack(msg, context);
if (!result) {
msg.setReconsumeTimes(msg.getReconsumeTimes() + 1);
msgBackFailed.add(msg);
}
}
if (!msgBackFailed.isEmpty()) {
consumeRequest.getMsgs().removeAll(msgBackFailed);
//更新消息消费进度,不管消费成功与否,上述这些消息消费成功,其实就是修改消费偏移量。(失败的,会进行重试,会创建新的消息)
this.submitConsumeRequestLater(msgBackFailed, consumeRequest.getProcessQueue(), consumeRequest.getMessageQueue());
}
第九步:集群模式下,判断ackIndex,如果等于-1,那么就要调用sendMessageBack方法,就是消息的ACK,所以在RocketMQ中,只有失败的消息才会ACK,这个方法是把消费失败的消息重新发送给broker,broker的处理逻辑就是根据重试次数依托定时消息机制来完成消息重试,broker在重试消息的时候会创建一个条新的消息,而不是用老的消息,如果到达一定的次数,那么进入死信队列,我在工作中会把即将进入死信队列的消息拿出来以json的格式放入mongodb中,通过界面的方法展示这些失败的消息,并在界面上继续提供重试的功能来处理这些失败的消息。如果重新发送失败,那么会延迟5s后重新消费。
long offset = consumeRequest.getProcessQueue().removeMessage(consumeRequest.getMsgs());
if (offset >= 0 && !consumeRequest.getProcessQueue().isDropped()) {
this.defaultMQPushConsumerImpl.getOffsetStore().updateOffset(consumeRequest.getMessageQueue(), offset, true);
}
第十步:不管是消费成功还是消费失败的消息,都会更新消费进度,首先从processQueue中移除所有消费成功的消息并返回offset,这里要注意一点,就是这个offset是processQueue中的msgTreeMap的最小的key,为什么要这样做呢,我的理解也是无奈之举,因为消费进度的推进是offset决定的,因为是线程池消费,不能保证先消费的是offset大的那条消息,所以推进消费进度只能取最小的那条消息的offset,这样在消费端重启的时候就可能会导致消息重复消费。