题目大意:
给定一个二维平面(0<x,y<1e9),上面分布了一些村庄,每个村庄都有它的价值。从0,0出发,到达,每次可以向东、向南、向东南三个方向走一步,但是只有通过东南方向来的人才能获得村庄的价值。
求最大价值。
输入:T组数据,包含N(N个村庄)T<=10
每组数据共N行,X,Y,V分别表示坐标和价值,N<=1e5
样例
输入:
1
3
1 1 1
1 2 2
3 3 1
输出 :
3
思路:
不考虑区间大小的话,定义dp[x][y]表示到达坐标x,y时的最大价值,a[x][y]表示位置为(x,y)的村庄的价值
那么dp[x][y]=max(dp[x-1][y-1]+a[x][y],dp[x-1][y],dp[x][y-1])
但是由于坐标 x,y<1e9
所以可以直接对所有坐标进行离散化。
接下来考虑对转移进行优化,
dp[x][y]可以由dp[1~x-1][1~y-1]当中的最大值转移过来
那么直接排序后用树状数组维护区间最大值就好了
什么,你说要用二维树状数组?你不慌,且听我慢慢解释
首先对于所有的村庄,首先按照从左往右从上往下排序,这样村庄就是x坐标相同的。
对于每一个x相同的坐标查询1-(y-1)区间的最值,然后当一整列(x相同)的村庄信息处理完后,将这一列每一个dp值插入树状数组(维护最大值,位置为y)。
因为将村庄的x坐标从小到大排序,已经存在的信息只能是当前村庄左边的村庄,然后树状数组查询的是从1-y-1的区间最值,结合一下就是从1~x-1和1~y-1的区间最值
详细怎么用代码实现,请看下面代码中的注释
代码:
#include<cstdlib>
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<queue>
#include<cstring>
#define lowbit(x) (((x)&-(x)))
#define MAXN 100006
#define pr(x) printf("%d\n",(x))//DEBUG
#define max(x,y) ((x)>(y)?(x):(y))
using namespace std;
int c[MAXN+10];
int n,m;
inline void modify(int x,int v)
{
while(x<=MAXN)
{
c[x]=max(c[x],v);
x+=lowbit(x);
}
}
inline int query(int x)
{
int f=0;
while(x>0)
{
f=max(f,c[x]);
x-=lowbit(x);
}
return f;
}
struct vill
{
int x,y,v;
}sa[MAXN];
bool operator<(vill a,vill b)
{
if(a.x==b.x)return a.y<b.y;
return a.x<b.x;
}
inline bool cmp(vill a,vill b)
{
return a.y<b.y;
}
int dp[MAXN];
int main()
{
// freopen("test.in","r",stdin);
// freopen("test1.out","w",stdout);
int T;
scanf("%d",&T);
while(T--)
{
memset(dp,0,sizeof(dp));
memset(c,0,sizeof(c));
int n,m;
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d%d%d",&sa[i].x,&sa[i].y,&sa[i].v);
n++;//增加一个最右下角的结点
sa[n].x=1000000002;
sa[n].y=1000000002;
sa[n].v=0;
sort(sa+1,sa+n+1,cmp);//离散化
int cur=2,now=sa[1].y;
sa[1].y=cur;
for(int i=2;i<=n;i++)
{
if(sa[i].y!=now)cur++;
now=sa[i].y;
sa[i].y=cur;
}
sort(sa+1,sa+n+1);//先根据x再根据y排序
for(int i=1;i<=n;i++)
{
dp[i]=query(sa[i].y-1)+sa[i].v;//单独处理第一个
int j;
for(j=i+1;sa[j].x==sa[j-1].x&&j<=n;j++)
dp[j]=query(sa[j].y-1)+sa[j].v;
//查询当前x坐标之前的 所有的 y坐标小于当前y坐标的 dp值
for(j=i+1;sa[j].x==sa[j-1].x&&j<=n;j++)
modify(sa[j].y,dp[j]);
//更新到达当前x坐标时 所有的 当前y坐标的位置的 最大值
modify(sa[i].y,dp[i]);//单独处理第一个
(sa[j].x!=sa[j-1].x)&&(i=(j-1));//跳过同一列
}
printf("%d\n",dp[n]);
}
return 0;
}
/*
1
3
1 1 1
1 2 2
3 3 1
*/