时间序列分析
499650021
这个作者很懒,什么都没留下…
展开
-
Python 3中使用ARIMA进行时间序列预测的指南
最好的做法是,从笔记本电脑的顶部导入需要的库: import warnings import itertools import pandas as pd import numpy as np import statsmodels.api as sm import matplotlib.pyplot as plt plt.style.use('fivethirtyeight') 我们还为我们的地块...转载 2018-04-17 20:12:15 · 34978 阅读 · 14 评论 -
AR(I)MA时间序列建模过程——步骤和python代码
转载自:https://www.jianshu.com/p/cced6617b423侵删1.异常值和缺失值的处理这绝对是数据分析时让所有人都头疼的问题。异常和缺失值会破坏数据的分布,并且干扰分析的结果,怎么处理它们是一门大学问,而我根本还没入门。(1)异常值3 ways to remove outliers from your data提供了关于如何对时间序列数据进行异常值检测的方法,作者认为移动...转载 2018-05-17 09:31:20 · 14657 阅读 · 3 评论