动态规划之最长连续递增序列

动态规划之最长连续递增序列

题目描述

给定一个未经排序的整数数组,找到最长连续递增子序列,并返回该序列的长度

连续递增的子序列 可以由两个下标 l 和 r(l < r)确定,如果对于每个 l <= i < r,都有 nums[i] < nums[i + 1] ,那么子序列 [nums[l], nums[l + 1], ..., nums[r - 1], nums[r]] 就是连续递增子序列。

示例 1:

输入:nums = [1,3,5,4,7]
输出:3
解释:最长连续递增序列是 [1,3,5], 长度为3。
尽管 [1,3,5,7] 也是升序的子序列, 但它不是连续的,因为 57 在原数组里被 4 隔开。 

示例 2:

输入:nums = [2,2,2,2,2]
输出:1
解释:最长连续递增序列是 [2], 长度为1

提示:

1 <= nums.length <= 104
-109 <= nums[i] <= 109

来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/longest-continuous-increasing-subsequence
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

进阶:可以设计并实现时间复杂度为 O(n) 的解决方案吗?

来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/WhsWhI
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

题解

class Solution {
public:
    int findLengthOfLCIS(vector<int>& nums) {
        int n = nums.size();
        if (n == 0) {
            return 0;
        }

        int res = 0;
        vector<int> dp(n);
        for (int i = 0; i < n; i++) {
            dp[i] = 1;

            if (i > 0 && nums[i] > nums[i - 1]) {
                dp[i] = dp[i - 1] + 1;
            }

            res = max(dp[i], res);
        }

        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值