题目描述
给定一个未经排序的整数数组,找到最长且 连续递增的子序列,并返回该序列的长度。
连续递增的子序列 可以由两个下标 l 和 r(l < r)确定,如果对于每个 l <= i < r
,都有 nums[i] < nums[i + 1]
,那么子序列 [nums[l], nums[l + 1], ..., nums[r - 1], nums[r]]
就是连续递增子序列。
示例 1:
输入:nums = [1,3,5,4,7]
输出:3
解释:最长连续递增序列是 [1,3,5], 长度为3。
尽管 [1,3,5,7] 也是升序的子序列, 但它不是连续的,因为 5 和 7 在原数组里被 4 隔开。
示例 2:
输入:nums = [2,2,2,2,2]
输出:1
解释:最长连续递增序列是 [2], 长度为1。
提示:
1 <= nums.length <= 104
-109 <= nums[i] <= 109
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/longest-continuous-increasing-subsequence
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
进阶:可以设计并实现时间复杂度为 O(n) 的解决方案吗?
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/WhsWhI
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
题解
class Solution {
public:
int findLengthOfLCIS(vector<int>& nums) {
int n = nums.size();
if (n == 0) {
return 0;
}
int res = 0;
vector<int> dp(n);
for (int i = 0; i < n; i++) {
dp[i] = 1;
if (i > 0 && nums[i] > nums[i - 1]) {
dp[i] = dp[i - 1] + 1;
}
res = max(dp[i], res);
}
return res;
}
};