1.题目
输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。
假设输入的前序遍历和中序遍历的结果中都不含重复的数字。
示例:例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。
2.思路
二叉树的前序遍历序列中,第一个数字总是树的根节点的值。
二叉树的中序遍历序列中,根节点的值在序列的中间,左子树节点的值位于根节点值的左边,右子树节点的值位于根节点值的右边。
如示例,前序遍历序列{1,2,4,7,3,5,6,8},中序遍历序列{4,7,2,1,5,3,8,6}
前序遍历序列{1,2,4,7,3,5,6,8}
中序遍历序列{4,7,2,1,5,3,8,6}
前序{1,2,4,7,3,5,6,8}
|
根节点
扫描中序遍历序列,找到根节点的位置
中序{4,7,2,1,5,3,8,6}
|
根节点
{4,7,2} 为左子树节点的值 共3个节点
{5,3,8,6}为右子树节点的值 共4个节点
因此前序遍历中根节点后面的3个数字是3个左子树节点的值,在后面的数字是右子树节点的值。
这样我们找到了左、右子树的前序遍历和中序遍历序列,可以递归的构建左子树和右子树。
流程大致如下:
(1) 前序遍历的第一个数字是根节点的值。
(2) 扫描中序遍历,根据(1)中根节点的值,找到根节点的位置。
(3) 中序遍历中,根节点值的左边是左子树节点的值,右边是右子树节点的值。分别确定左右子树节点数。
(4) 根据(3)中左右子树节点数,在前序遍历中找到左右子树对应的子序列。
(5) 现在已经确定了左右子树对应的前序和中序遍历序列,递归重建左右子树。
3.实现
class Solution {
public:
TreeNode* reConstructBinaryTree(vector<int> pre, vector<int> vin) {
return reConstruct(pre, vin, 0, pre.size() - 1, 0, vin.size() - 1);
}
TreeNode* reConstruct(vector<int> pre, vector<int> vin, int ps, int pe, int is, int ie)
{
/*
通过pre[ps, pe] vin[is, ie] 重建二叉树
ps:前序遍历序列起始位置
pe:前序遍历序列终止位置
is:中序遍历序列起始位置
ie:中序遍历序列终止位置
*/
if(ps > pe || is > ie)
return nullptr; //递归的结束条件
TreeNode* node = new TreeNode(pre[ps]); //根节点
int pos = 0;
for(int i = is; i <= ie; i++)
{
if(vin[i] == pre[ps])
{
pos = i; //中序遍历中寻找根节点的位置
break;
}
}
node->left = reConstruct(pre, vin, ps + 1, ps + 1 + (pos - 1 - is), is, pos - 1);//重建根节点的左子树
node->right = reConstruct(pre, vin, pe - (ie - pos - 1), pe, pos + 1, ie);//重建根节点的右子树
return node;
}
};
Tips:
node->left = reConstruct(pre, vin, ps + 1, ps + 1 + (pos - 1 - is), is, pos - 1);//重建根节点的左子树
在上面的语句中,左子树的中序遍历序列 在vin中很容易确定是vin[is, pos - 1]
但前序遍历序列的起点是ps + 1, 终点不容易直接写出(设为x)
可以考虑相对位置:
x - (ps + 1) = pos - 1 - is
x = ps + 1 + (pos - 1 - is)
同理:
node->right = reConstruct(pre, vin, pe - (ie - pos - 1), pe, pos + 1, ie);//重建根节点的右子树
右子树的中序遍历序列 在vin中很容易确定是vin[pos + 1, ie]
但前序遍历序列的终点是pe, 起点不容易直接写出(设为y)
可以考虑相对位置:
pe - y = ie - (pos + 1)
y = pe - (ie - pos - 1)