剑指offer 面试题7 重建二叉树

1.题目

输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。

假设输入的前序遍历和中序遍历的结果中都不含重复的数字。

示例:例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。

 

2.思路

二叉树的前序遍历序列中,第一个数字总是树的根节点的值。

二叉树的中序遍历序列中,根节点的值在序列的中间,左子树节点的值位于根节点值的左边,右子树节点的值位于根节点值的右边。

如示例,前序遍历序列{1,2,4,7,3,5,6,8},中序遍历序列{4,7,2,1,5,3,8,6}

前序遍历序列{1,2,4,7,3,5,6,8}
中序遍历序列{4,7,2,1,5,3,8,6}

前序{1,2,4,7,3,5,6,8}
     |
   根节点

扫描中序遍历序列,找到根节点的位置

中序{4,7,2,1,5,3,8,6}
           |
         根节点

{4,7,2} 为左子树节点的值    共3个节点
{5,3,8,6}为右子树节点的值   共4个节点

因此前序遍历中根节点后面的3个数字是3个左子树节点的值,在后面的数字是右子树节点的值。

这样我们找到了左、右子树的前序遍历和中序遍历序列,可以递归的构建左子树和右子树。

流程大致如下:

(1) 前序遍历的第一个数字是根节点的值。

(2) 扫描中序遍历,根据(1)中根节点的值,找到根节点的位置。

(3) 中序遍历中,根节点值的左边是左子树节点的值,右边是右子树节点的值。分别确定左右子树节点数。

(4) 根据(3)中左右子树节点数,在前序遍历中找到左右子树对应的子序列。

(5) 现在已经确定了左右子树对应的前序和中序遍历序列,递归重建左右子树。

 

3.实现

class Solution {
public:
    TreeNode* reConstructBinaryTree(vector<int> pre, vector<int> vin) {
        return reConstruct(pre, vin, 0, pre.size() - 1, 0, vin.size() - 1);
    }
    TreeNode* reConstruct(vector<int> pre, vector<int> vin, int ps, int pe, int is, int ie)
    {
      /*
         通过pre[ps, pe] vin[is, ie] 重建二叉树
         ps:前序遍历序列起始位置
         pe:前序遍历序列终止位置
         is:中序遍历序列起始位置
         ie:中序遍历序列终止位置   
      */
        if(ps > pe || is > ie)
            return nullptr;  //递归的结束条件

        TreeNode* node = new TreeNode(pre[ps]); //根节点
        
        int pos = 0; 
        for(int i = is; i <= ie; i++)
        {
            if(vin[i] == pre[ps])
            {
                pos = i; //中序遍历中寻找根节点的位置
                break;
            }
        }
        
        node->left = reConstruct(pre, vin, ps + 1, ps + 1 + (pos - 1 - is), is, pos - 1);//重建根节点的左子树
        node->right = reConstruct(pre, vin, pe - (ie - pos - 1), pe, pos + 1, ie);//重建根节点的右子树
        
        return node;
    }
};

Tips:

node->left = reConstruct(pre, vin, ps + 1, ps + 1 + (pos - 1 - is), is, pos - 1);//重建根节点的左子树
在上面的语句中,左子树的中序遍历序列 在vin中很容易确定是vin[is, pos - 1]
但前序遍历序列的起点是ps + 1, 终点不容易直接写出(设为x)
可以考虑相对位置:
x - (ps + 1) = pos - 1 - is
x = ps + 1 + (pos - 1 - is)


同理:
node->right = reConstruct(pre, vin, pe - (ie - pos - 1), pe, pos + 1, ie);//重建根节点的右子树

右子树的中序遍历序列 在vin中很容易确定是vin[pos + 1, ie]
但前序遍历序列的终点是pe, 起点不容易直接写出(设为y)
可以考虑相对位置:
pe - y = ie - (pos + 1)
y = pe - (ie - pos - 1)     

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值