自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

华南农大-郭庆文

我是地瓜

原创 公钥可搜索加密及其python实现

目录公钥可搜索加密密码工具库 公钥可搜索加密 公钥可搜索加密(Public-Key Encryption with Keyword Search,简称PEKS)定义如下: Setup(1λ)→(sk,pk)\mathsf{Setup}(1^\lambda) \to (\it{sk}, \...

2020-01-01 20:52:50

阅读数 22

评论数 1

原创 零知识性质意味着证据不可区分性

目录证据不可区分性ZK意味着WI一个例子 证据不可区分性 定义. (证据不可区分性,Witness Indistinguishability,简称WI)记Π=(Setup,Prove,Vrfy,Check)\Pi = (\mathsf{Setup}, \mathsf{Prove}, \math...

2019-12-29 21:13:40

阅读数 26

评论数 0

转载 直观理解为什么分类问题用交叉熵损失而不用均方误差损失?

目录Acknowledge摘要交叉熵损失与均方误差损失损失函数角度softmax反向传播角度总结 Acknowledge 这篇文章来自:https://www.cnblogs.com/shine-lee/archive/2019/12/12/12032066.html,作者:@进击的小学生。从...

2019-12-28 21:50:21

阅读数 37

评论数 0

原创 Introductionto Modern Cryptograph 第十三章部分课后题答案

Acknowledge 致敬Katz J, Lindell Y. Introduction to modern cryptography[M]. Chapman and Hall/CRC, 2014. 推荐该书正版。 该书第12章的内容是数字签名,具体推荐Katz J的另一本书: Katz J. ...

2019-11-29 20:47:27

阅读数 18

评论数 0

原创 Introductionto Modern Cryptograph 第十章部分课后题答案

Acknowledge 致敬Katz J, Lindell Y. Introduction to modern cryptography[M]. Chapman and Hall/CRC, 2014. 推荐该书正版。 10.1 Assume a public-key encryption ...

2019-11-28 17:23:21

阅读数 30

评论数 0

原创 Introductionto Modern Cryptograph 第九章部分课后题答案

Acknowledge 致敬Katz J, Lindell Y. Introduction to modern cryptography[M]. Chapman and Hall/CRC, 2014. 推荐该书正版。 9.1 Consider the following interacti...

2019-11-20 21:16:11

阅读数 28

评论数 0

原创 基于去雾算法的低光照图像增强算法(论文算法Python复现)

文章目录致谢论文原理工程实现视频应用Acknowledge 致谢 这学期有幸参加学习学校韩宇星教授的 数字图像工程(全英) 课程,课程最后给了1篇paper①,是基于去雾算法的低光照图像增强算法,本人觉着非常厉害,非常感谢老师提供这篇论文,有兴趣的大伙可以一起学习一下。 ① Dong X, Wa...

2019-10-29 21:12:05

阅读数 62

评论数 0

原创 JPEG图片压缩的Python实现

文章目录致谢预备知识Python代码 致谢 这学期有幸参加学习学校韩宇星教授的 数字图像工程(全英) 课程,对机器视觉了解更进一步,对韩老师引用世事洞明皆学问,人情练达即文章那节课印象颇深。课程期间,通过网络博客资料学习,收获很多。为表感谢,我记录这篇学习笔记,希望为全世界知识共享迈出一小步。...

2019-10-29 20:25:30

阅读数 881

评论数 17

原创 Introductionto Modern Cryptograph 第六章部分课后题答案

文章目录 Show that the addition function f(x,y)=x+yf(x, y) = x+yf(x,y)=x+y (where ∣x∣=∣y∣|x| = |y|∣x∣=∣y∣ and xxx and yyy are interpreted as natural n...

2019-10-25 10:55:14

阅读数 48

评论数 0

原创 Introductionto Modern Cryptograph 第四章部分课后题答案(下)

4.10 Provide formal definitions for second pre-image resistance and pre-image resistance. Formally prove that any hash function that is collision res...

2019-09-11 19:51:00

阅读数 160

评论数 0

原创 K-means聚类与EM算法两者的详细关系

文章目录前言两者大致关系三硬币模型K均值的数学描述 前言 师弟问我K-means聚类与EM算法的关系,在知乎请问如何用数学方法证明K-means是EM算法的特例?问题上反复看了2天,又来回翻阅《统计学习方法(第2版) 李航 著》、《机器学习 周志华 著》和《百面机器学习 诸葛越 主编/葫芦娃 ...

2019-09-06 09:20:08

阅读数 57

评论数 0

原创 主成分分析(PCA)原理解析

文章目录基变换主成分分析性质协方差矩阵主成分分析原理主成分分析k值的选取Acknowledge 基变换 若使用常用的二维直角坐标系(基为(1;0)(1; 0)(1;0)和(0;1)(0; 1)(0;1))来表示向量(3;2)(3; 2)(3;2),可得到下图, 当以 (12;12)(\...

2019-08-27 15:55:24

阅读数 37

评论数 0

原创 西瓜书《机器学习》第七章部分课后题

题目7.1 试使用极大似然法估算西瓜数据集3.0中前3个属性的类条件概率。 对于属性色泽,根据表4.3,有 好瓜:3个青绿,4个乌黑,1个浅白 坏瓜:3个青绿,2个乌黑,4个浅白 设P(青绿∣好瓜)=ζ1P(青绿|好瓜) = \zeta_1P(青绿∣好瓜)=ζ1​,P(乌...

2019-08-21 21:21:49

阅读数 92

评论数 0

原创 交叉熵与KL散度

目录KL散度的定义KL散度与交叉熵Acknowledge 最近遇到交叉熵作为损失函数的情况,且在花书刚好看到KL散度一节,故写一下学习笔记。 KL散度的定义 KL散度的具体定义参考花书3.13节, DKL(P∥Q)=Ex∼P[log⁡P(x)Q(x)]=Ex∼P[log⁡P(x)−log⁡Q(x)...

2019-08-21 11:39:36

阅读数 24

评论数 0

原创 西瓜书《机器学习》第六章部分课后题

目录题目6.1 题目6.1 试证明样本空间中任意点x\bm{x}x到超平面(w,b)(\bm{w}, b)(w,b)的距离为式(6.2) 假设点x\bm{x}x在超平面上的投影为x′\bm{x}'x′,则wTx′+b=0\bm{w}^{\text{T}} \bm{x...

2019-07-30 20:04:55

阅读数 128

评论数 0

原创 零知识证明入门理论基础

零知识证明概念 零知识证明(Zero-Knowledge Proof,简称ZKP)系统,使得持有相关证据ω\omegaω的证明者P\mathcal{P}P在不泄露ω\omegaω的前提下,能够向验证者V\mathcal{V}V证明与ω\omegaω相关的语句ι\iotaι是成立的。举例,P\ma...

2019-07-30 18:16:26

阅读数 53

评论数 0

原创 西瓜书《机器学习》第五章部分课后题

目录题目5.1 题目5.1 试述将线性函数f(x)=wTxf(\bm{x}) = \bm{w}^{\text{T}}\bm{x}f(x)=wTx用作神经元激活函数的缺陷。

2019-07-24 15:06:43

阅读数 56

评论数 0

原创 Introductionto Modern Cryptograph 第四章部分课后题答案(上)

4.1 Say Π=(Gen,Mac,Vrfy)\Pi = (\mathsf{Gen}, \mathsf{Mac}, \mathsf{Vrfy})Π=(Gen,Mac,Vrfy) is a secure MAC, and for k∈{0,1}nk \in \{0, 1\}^nk∈{0,1}n t...

2019-07-22 18:09:27

阅读数 168

评论数 0

原创 西瓜书《机器学习》第四章部分课后题

目录决策树代码 决策树代码 以原书表4.2为例,基于信息增益实现图4.2的算法。ids_data是数据编号的list,values_of_attributes存储每列属性所有可能的取值。 import math def Setup(data): ids_data = [i f...

2019-07-18 19:28:54

阅读数 32

评论数 0

原创 Introductionto Modern Cryptograph 第三章部分课后题答案

3.1 Prove Proposition 3.6. 看定义Definition 3.4,若函数fff为可忽略函数,那么对于任意多项式函数p(⋅)p(\cdot)p(⋅),存在一个整数NNN,使得整数n>Nn > Nn>N满足f(n)<1/p(...

2019-07-16 18:56:24

阅读数 278

评论数 0

原创 公钥密码学入门基础:El Gamal加密的安全性证明

主要符号表 符号 含义 x←Xx \gets \mathcal{X}x←X 从集合X\mathcal{X}X中随机挑选一个元素,将其值赋予xxx x:=yx := yx:=y 将元素yyy的值赋予xxx x=yx = yx=y 表示元...

2019-07-15 17:31:14

阅读数 117

评论数 0

原创 西瓜书《机器学习》第三章部分课后题

题目3.1 试析在什么情形下式(3.2)中不必考虑偏置项bbb。 (略) 题目3.2 试证明,对于参数w\bm{w}w,对率回归的目标函数(3.18)是非凸的,但其对数似然函数(3.27)是凸的。 (略) 题目3.3 编程实现对率回归,并给出西瓜数据集3.0α3....

2019-07-09 11:02:25

阅读数 164

评论数 0

原创 西瓜书《机器学习》第二章部分课后题

题目2.1 数据集包含1000个样本,其中500个正例、500个反例,将其划分为包含70%样本的训练集和30%样本的测试集用于留出法评估,试估算公有多少种划分方式。 训练集和测试集的划分要尽可能保持数据分布的一致性,按题目要求,需要抽700个训练样本,300个测试样本,正例与反例的比例...

2019-07-05 15:59:08

阅读数 120

评论数 0

原创 西瓜书《机器学习》第一章部分课后题

题目1.1 1.1 表1.1中若只包含编号1和4的两个样例,试给出相应的版本空间。 编号 色泽 根蒂 敲声 好瓜 1 青绿 蜷缩 浊响 是 4 乌黑 稍蜷 沉闷 否 用2位二进制表示色泽,01表示青绿,10表...

2019-07-03 14:55:16

阅读数 64

评论数 2

提示
确定要删除当前文章?
取消 删除