POJ 3268 Silver Cow Party

题目链接:

http://poj.org/problem?id=3268

题意:

许多牛到编号为X出开party,每只牛到达X处并且返回自己原先位置所需的最短路径和为L1,L2.......

求其中最大的值:

输入N,M,X,

N表示有N个点

M表示有M条边

X表示目的地的编号



输出:到达编号X并且返回自己原先位置所需的最短路径和 最大的编号


思路:

1.以X编号为起点,求出到达其他各点所需 的最短路径L1

2.求出各点到达编号X的最短路径L2

3.求出(L1+L2)最大值


做法:

1.dijkstra(x,n)//求编号X到达各点的最短距离

2.该图是有向图 所以把所有路径方向取反:原来是1到2  现在变成2到1

3.dijkstra(x,n)  //这个时候就相当于求各点到达编号X的最短距离了


样例解析:

4 8 2
1 2 4
1 3 2
1 4 7
2 1 1
2 3 5
3 1 2
3 4 4
4 2 3

共有4个点8条边 目的地编号为2

编号1到达2的最短路径:

1->2   4

返回最短路径:

2->1  1

和为: 5

L1=5

**************

编号3到达2的最短路径:

3->1->2   6

返回最短路径:

2->1->3  3

和为: 9

L3=9

***************

编号4到达2的最短路径:

4->2   3

返回最短路径:

2->1->3->4  7

和为: 10

L4=10


L1,L3,L4中最大的是L4=10所以输出10

/*
题意是:
所有牛用最小时间到达 x处并且返回自己原来的地方
找出 其中用时最长的 并且输出这个时间

思路:
求出 起点 1...n 到达 x的最短距离 a
求出 起点x 到达 1.....n 的最短距离 b
求出  ans=max(a+b,ans);

方法:
1.以x为起点  dijkstra 一次 求出 以x为起点到达 其他处的最短距离
2.把G[i][j] 与G[j][i]值交换
3.以x为起点  dijkstra 一次 求出 其他处到达 x的最短距离






*/


#include<cstdio>
#include<cstring>
#define INF 1000000000
const int N=1001;
int G[N][N];
int sum[N];
int max(int a,int b){return a>b?a:b;}
void dijkstra(int s,int n)
{
    int dis[N]={0};
    bool vis[N]={0};
    int pos=s,i,j,min;
    for(int i=1;i<=n;++i)dis[i]=G[pos][i];
    //  dis[s]=0;
    vis[pos]=true;
    for(i=1;i<n;++i){
        for(j=1,min=INF;j<=n;++j){
            if(!vis[j]&&dis[j]<min){
                min=dis[j];
                pos=j;
            }
        }
        vis[pos]=true;
        sum[pos]+=min;
     //  printf("pos:%d sum[pos]=%d\n",pos,sum[pos]);
        for(j=1;j<=n;++j){
            if(!vis[j]&&dis[j]>dis[pos]+G[pos][j]){
                dis[j]=dis[pos]+G[pos][j];
            }
        }
    }
}
int main()
{
    int n,m,x;
    int s,e,dist;
    while(~scanf("%d %d %d",&n,&m,&x)){
        for(int i=0;i<=n;++i)
            for(int j=0;j<=n;++j){
                G[i][j]=INF;
                if(i==j) G[i][i]=0;}

        for(int i=0;i<m;++i){
            scanf("%d %d %d",&s,&e,&dist);
            if(dist<G[s][e])
            G[s][e]=dist;
        }
        memset(sum,0,sizeof(sum));
        dijkstra(x,n);
       for(int i=0;i<=n;++i)
            for(int j=0;j<i;++j){//注意这里的
                int tmp=G[i][j];
                G[i][j]=G[j][i];
                G[j][i]=tmp;

            }
        dijkstra(x,n);
        int ans=-1;
        for(int i=1;i<=n;++i)
            ans=max(sum[i],ans);
           // printf("sum[%d]=%d\n",i,sum[i]);

        printf("%d\n",ans);
    }
}








评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值