Ivan has got an array of n non-negative integers a1, a2, ..., an. Ivan knows that the array is sorted in the non-decreasing order.
Ivan wrote out integers 2a1, 2a2, ..., 2an on a piece of paper. Now he wonders, what minimum number of integers of form 2b (b ≥ 0)need to be added to the piece of paper so that the sum of all integers written on the paper equalled 2v - 1 for some integer v (v ≥ 0).
Help Ivan, find the required quantity of numbers.
The first line contains integer n (1 ≤ n ≤ 105). The second input line contains n space-separated integers a1, a2, ..., an (0 ≤ ai ≤ 2·109). It is guaranteed that a1 ≤ a2 ≤ ... ≤ an.
Print a single integer — the answer to the problem.
4 0 1 1 1
0
1 3
3
In the first sample you do not need to add anything, the sum of numbers already equals 23 - 1 = 7.
In the second sample you need to add numbers 20, 21, 22.
题意:
给出 n(1 ~ 100000)代表有 n 个数,后给出 n 个数,代表 2 ^ ai,加和之后,问要添加多少个 2 ^ i 使变成 2 ^ v -1。
思路:
因为 2 ^ a + 2 ^ a = 2 ^ (a + 1),所以当某个数出现 2 次以上的时候可以通过合并不断得到新的数,并且保证每个数都出现一次。
AC:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <set>
using namespace std;
int main() {
int n;
set<int> s;
scanf("%d", &n);
int max_num = -1;
while (n--) {
int ans;
scanf("%d", &ans);
while (s.count(ans)) {
s.erase(ans);
++ans;
}
s.insert(ans);
max_num = max(max_num, ans);
}
printf("%d\n", max_num - s.size() + 1);
return 0;
}