Hadoop分布式文件系统HDFS
HDFS前言
设计思想
分而治之:将大文件、大批量文件,分布式存放在大量服务器上,以便于采取分而治之的方式对海量数据进行运算分析
在大数据系统中作用
为各类分布式运算框架(如:mapreduce,spark,tez,……)提供数据存储服务
重点概念:文件切块,副本存放,元数据
HDFS的概念和特性
首先,它是一个文件系统,用于存储文件,通过统一的命名空间——目录树来定位文件。
其次,它是分布式的,由很多服务器联合起来实现其功能,集群中的服务器有各自的角色。
重要特性如下:
- HDFS中的文件在物理上是分块存储(block),块的大小可以通过配置参数( dfs.blocksize)来规定,默认大小在hadoop2.x版本中是128M,老版本中是64M
- HDFS文件系统会给客户端提供一个统一的抽象目录树,客户端通过路径来访问文件,形如:hdfs://namenode:port/dir-a/dir-b/dir-c/file.data
- 目录结构及文件分块信息(元数据)的管理由namenode节点承担
——namenode是HDFS集群主节点,负责维护整个hdfs文件系统的目录树,以及每一个路径(文件)所对应的block块信息(block的id,及所在的datanode服务器)- 文件的各个block的存储管理由datanode节点承担
—- datanode是HDFS集群从节点,每一个block都可以在多个datanode上存储多个副本(副本数量也可以通过参数设置dfs.replication)- HDFS是设计成适应一次写入,多次读出的场景,且不支持文件的修改
(注:适合用来做数据分析,并不适合用来做网盘应用,因为,不便修改,延迟大,网络开销大,成本太高)
HDFS基本操作
HDFS的shell(命令行客户端)操作
命令行客户端支持的命令参数
$hadoop fs -ls /
[-appendToFile <localsrc> ... <dst>]
[-cat [-ignoreCrc] <src> ...]
[-checksum <src> ...]
[-chgrp [-R] GROUP PATH...]
[-chmod [-R] <MODE[,MODE]... | OCTALMODE> PATH...]
[-chown [-R] [OWNER][:[GROUP]] PATH...]
[-copyFromLocal [-f] [-p] <localsrc> ... <dst>]
[-copyToLocal [-p] [-ignoreCrc] [-crc] <src> ... <localdst>]
[-count [-q] <path> ...]
[-cp [-f] [-p] <src> ... <dst>]
[-createSnapshot <snapshotDir> [<snapshotName>]]
[-deleteSnapshot <snapshotDir> <snapshotName>]
[-df [-h] [<path> ...]]
[-du [-s] [-h] <path> ...]
[-expunge]
[-get [-p] [-ignoreCrc] [-crc] <src> ... <localdst>]
[-getfacl [-R] <path>]
[-getmerge [-nl] <src> <localdst>]
[-help [cmd ...]]
[-ls [-d] [-h] [-R] [<path> ...]]
[-mkdir [-p] <path> ...]
[-moveFromLocal <localsrc> ... <dst>]
[-moveToLocal <src> <localdst>]
[-mv <src> ... <dst>]
[-put [-f] [-p] <localsrc> ... <dst>]
[-renameSnapshot <snapshotDir> <oldName> <newName>]
[-rm [-f] [-r|-R] [-skipTrash] <src> ...]
[-rmdir [--ignore-fail-on-non-empty] <dir> ...]
[-setfacl [-R] [{-b|-k} {-m|-x <acl_spec>} <path>]|[--set <acl_spec> <path>]]
[-setrep [-R] [-w] <rep> <path> ...]
[-stat [format] <path> ...]
[-tail [-f] <file>]
[-test -[defsz] <path>]
[-text [-ignoreCrc] <src> ...]
[-touchz <path> ...]
[-usage [cmd ...]]
常用命令参数介绍
-help
功能:输出这个命令参数手册
-ls
功能:显示目录信息
示例: hadoop fs -ls hdfs://hadoop-server01:9000/
备注:这些参数中,所有的hdfs路径都可以简写
hadoop fs -ls / 等同于上一条命令的效果
-mkdir
功能:在hdfs上创建目录
示例:hadoop fs -mkdir -p /aaa/bbb/cc/dd
-moveFromLocal
功能:从本地剪切粘贴到hdfs
示例:hadoop fs - moveFromLocal /home/hadoop/a.txt /aaa/bbb/cc/dd
-moveToLocal
功能:从hdfs剪切粘贴到本地
示例:hadoop fs - moveToLocal /aaa/bbb/cc/dd /home/hadoop/a.txt
--appendToFile
功能:追加一个文件到已经存在的文件末尾
示例:hadoop fs -appendToFile ./hello.txt
hdfs://hadoop-server01:9000/hello.txt
可以简写为:
hadoop fs -appendToFile ./hello.txt /hello.txt
-cat
功能:显示文件内容
示例:hadoop fs -cat /hello.txt
-tail
功能:显示一个文件的末尾
示例:hadoop fs -tail /weblog/access_log.1
-text
功能:以字符形式打印一个文件的内容
示例:hadoop fs -text /weblog/access_log.1
-chgrp
-chmod
-chown
功能:linux文件系统中的用法一样,对文件所属权限
示例:
hadoop fs -chmod 666 /hello.txt
hadoop fs -chown someuser:somegrp /hello.txt
-copyFromLocal
功能:从本地文件系统中拷贝文件到hdfs路径去
示例:hadoop fs -copyFromLocal ./jdk.tar.gz /aaa/
-copyToLocal
功能:从hdfs拷贝到本地
示例:hadoop fs -copyToLocal /aaa/jdk.tar.gz
-cp
功能:从hdfs的一个路径拷贝hdfs的另一个路径
示例: hadoop fs -cp /aaa/jdk.tar.gz /bbb/jdk.tar.gz.2
-mv
功能:在hdfs目录中移动文件
示例: hadoop fs -mv /aaa/jdk.tar.gz /
-get
功能:等同于copyToLocal,就是从hdfs下载文件到本地
示例:hadoop fs -get /aaa/jdk.tar.gz
-getmerge
功能:合并下载多个文件
示例:比如hdfs的目录 /aaa/下有多个文件:log.1, log.2,log.3,...
hadoop fs -getmerge /aaa/log.* ./log.sum
-put
功能:等同于copyFromLocal
示例:hadoop fs -put /aaa/jdk.tar.gz /bbb/jdk.tar.gz.2
-rm
功能:删除文件或文件夹
示例:hadoop fs -rm -r /aaa/bbb/
-rmdir
功能:删除空目录
示例:hadoop fs -rmdir /aaa/bbb/ccc
-df
功能:统计文件系统的可用空间信息
示例:hadoop fs -df -h /
-count
功能:统计一个指定目录下的文件节点数量
示例:hadoop fs -count /aaa/
-setrep
功能:设置hdfs中文件的副本数量
示例:hadoop fs -setrep 3 /aaa/jdk.tar.gz
-du
功能:统计文件夹的大小信息
示例:hadoop fs -du -s -h /aaa/*
HDFS原理
hdfs的工作机制
工作机制的学习主要是为加深对分布式系统的理解,以及增强遇到各种问题时的分析解决能力,形成一定的集群运维能力
很多不是真正理解hadoop技术体系的人会常常觉得HDFS可用于网盘类应用,但实际并非如此。要想将技术准确用在恰当的地方,必须对技术有深刻的理解
概述
- HDFS集群分为两大角色:NameNode、DataNode
- NameNode负责管理整个文件系统的元数据
- DataNode 负责管理用户的文件数据块
- 文件会按照固定的大小(blocksize)切成若干块后分布式存储在若干台datanode上
- 每一个文件块可以有多个副本,并存放在不同的datanode上
- Datanode会定期向Namenode汇报自身所保存的文件block信息,而namenode则会负责保持文件的副本数量
- HDFS的内部工作机制对客户端保持透明,客户端请求访问HDFS都是通过向namenode申请来进行
HDFS写数据流程
客户端要向HDFS写数据,首先要跟namenode通信以确认可以写文件并获得接收文件block的datanode,然后,客户端按顺序将文件逐个block传递给相应datanode,并由接收到block的datanode负责向其他datanode复制block的副本
详细步骤图
详细步骤解析
- 根namenode通信请求上传文件,namenode检查目标文件是否已存在,父目录是否存在
- namenode返回是否可以上传
- client请求第一个 block该传输到哪些datanode服务器上
- namenode返回3个datanode服务器ABC
- client请求3台dn中的一台A上传数据(本质上是一个RPC调用,建立pipeline),A收到请求会继续调用B,然后B调用C,将真个pipeline建立完成,逐级返回客户端
- client开始往A上传第一个block(先从磁盘读取数据放到一个本地内存缓存),以packet为单位,A收到一个packet就会传给B,B传给C;A每传一个packet会放入一个应答队列等待应答
- 当一个block传输完成之后,client再次请求namenode上传第二个block的服务器。
HDFS读数据流程
客户端将要读取的文件路径发送给namenode,namenode获取文件的元信息(主要是block的存放位置信息)返回给客户端,客户端根据返回的信息找到相应datanode逐个获取文件的block并在客户端本地进行数据追加合并从而获得整个文件
详细步骤图
详细步骤解析
- 跟namenode通信查询元数据,找到文件块所在的datanode服务器
- 挑选一台datanode(就近原则,然后随机)服务器,请求建立socket流
- datanode开始发送数据(从磁盘里面读取数据放入流,以packet为单位来做校验)
- 客户端以packet为单位接收,现在本地缓存,然后写入目标文件
NAMENODE工作机制
学习目标:
理解namenode的工作机制尤其是元数据管理机制,以增强对HDFS工作原理的理解,及培养hadoop集群运营中“性能调优”、“namenode”故障问题的分析解决能力
问题场景:
1. 集群启动后,可以查看文件,但是上传文件时报错,打开web页面可看到namenode正处于safemode状态,怎么处理?
2. Namenode服务器的磁盘故障导致namenode宕机,如何挽救集群及数据?
3. Namenode是否可以有多个?namenode内存要配置多大?namenode跟集群数据存储能力有关系吗?
4. 文件的blocksize究竟调大好还是调小好?
……
诸如此类问题的回答,都需要基于对namenode自身的工作原理的深刻理解
NameNode职责
负责客户端请求的响应
元数据的管理(查询,修改)
元数据管理
namenode对数据的管理采用了三种存储形式:
1. 内存元数据(NameSystem)
2. 磁盘元数据镜像文件
3. 数据操作日志文件(可通过日志运算出元数据)
元数据存储机制
- 内存中有一份完整的元数据(内存meta data)
- 磁盘有一个“准完整”的元数据镜像(fsimage)文件(在namenode的工作目录中)
- 用于衔接内存metadata和持久化元数据镜像fsimage之间的操作日志(edits文件)注:当客户端对hdfs中的文件进行新增或者修改操作,操作记录首先被记入edits日志文件中,当客户端操作成功后,相应的元数据会更新到内存meta.data中
元数据手动查看
可以通过hdfs的一个工具来查看edits中的信息
bin/hdfs oev -i edits -o edits.xml
bin/hdfs oiv -i fsimage_0000000000000000087 -p XML -o fsimage.xml
元数据的checkpoint
每隔一段时间,会由secondary namenode将namenode上积累的所有edits和一个最新的fsimage下载到本地,并加载到内存进行merge(这个过程称为checkpoint)
checkpoint的详细过程
checkpoint操作的触发条件配置参数
dfs.namenode.checkpoint.check.period=60 #检查触发条件是否满足的频率,60秒
dfs.namenode.checkpoint.dir=file://${hadoop.tmp.dir}/dfs/namesecondary
#以上两个参数做checkpoint操作时,secondary namenode的本地工作目录
dfs.namenode.checkpoint.edits.dir=${dfs.namenode.checkpoint.dir}
dfs.namenode.checkpoint.max-retries=3 #最大重试次数
dfs.namenode.checkpoint.period=3600 #两次checkpoint之间的时间间隔3600秒
dfs.namenode.checkpoint.txns=1000000 #两次checkpoint之间最大的操作记录
checkpoint的附带作用
namenode和secondary namenode的工作目录存储结构完全相同,所以,当namenode故障退出需要重新恢复时,可以从secondary namenode的工作目录中将fsimage拷贝到namenode的工作目录,以恢复namenode的元数据
DataNode的工作机制
问题场景:
1. 集群容量不够,怎么扩容?
2. 如果有一些datanode宕机,该怎么办?
3. datanode明明已启动,但是集群中的可用datanode列表中就是没有,怎么办?
……
以上这类问题的解答,有赖于对datanode工作机制的深刻理解
概述
1. Datanode工作职责:
存储管理用户的文件块数据
定期向namenode汇报自身所持有的block信息(通过心跳信息上报)
(这点很重要,因为,当集群中发生某些block副本失效时,集群如何恢复block初始副本数量的问题)
<property>
<name>dfs.blockreport.intervalMsec</name>
<value>3600000</value>
<description>Determines block reporting interval in milliseconds.</description>
</property>
2. DataNode掉线判断时限参数
datanode进程死亡或者网络故障造成datanode无法与namenode通信,namenode不会立即把该节点判定为死亡,要经过一段时间,这段时间暂称作超时时长。HDFS默认的超时时长为10分钟+30秒。如果定义超时时间为timeout,则超时时长的计算公式为:
timeout = 2 * heartbeat.recheck.interval + 10 * dfs.heartbeat.interval。
而默认的heartbeat.recheck.interval 大小为5分钟,dfs.heartbeat.interval默认为3秒。
需要注意的是hdfs-site.xml 配置文件中的heartbeat.recheck.interval的单位为毫秒,dfs.heartbeat.interval的单位为秒。所以,举个例子,如果heartbeat.recheck.interval设置为5000(毫秒),dfs.heartbeat.interval设置为3(秒,默认),则总的超时时间为40秒。
<property>
<name>heartbeat.recheck.interval</name>
<value>2000</value>
</property>
<property>
<name>dfs.heartbeat.interval</name>
<value>1</value>
</property>
观察验证DATANODE功能
上传一个文件,观察文件的block具体的物理存放情况:
在每一台datanode机器上的这个目录中能找到文件的切块:
/home/hadoop/app/hadoop-2.4.1/tmp/dfs/data/current/BP-193442119-192.168.2.120-1432457733977/current/finalized
HDFS应用开发
HDFS的java操作
hdfs在生产应用中主要是客户端的开发,其核心步骤是从hdfs提供的api中构造一个HDFS的访问客户端对象,然后通过该客户端对象操作(增删改查)HDFS上的文件
搭建开发环境
1. 引入依赖
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.6.1</version>
</dependency>
注:如需手动引入jar包,hdfs的jar包—-hadoop的安装目录的share下
2. window下开发的说明
建议在linux下进行hadoop应用的开发,不会存在兼容性问题。如在window上做客户端应用开发,需要设置以下环境:
A、在windows的某个目录下解压一个hadoop的安装包
B、将安装包下的lib和bin目录用对应windows版本平台编译的本地库替换
C、在window系统中配置HADOOP_HOME指向你解压的安装包
D、在windows系统的path变量中加入hadoop的bin目录
获取api中的客户端对象
在java中操作hdfs,首先要获得一个客户端实例
Configuration conf = new Configuration()
FileSystem fs = FileSystem.get(conf)
而我们的操作目标是HDFS,所以获取到的fs对象应该是DistributedFileSystem的实例。
get方法是从何处判断具体实例化那种客户端类呢?
从conf中的一个参数 fs.defaultFS的配置值判断。如果我们的代码中没有指定fs.defaultFS,并且工程classpath下也没有给定相应的配置,conf中的默认值就来自于hadoop的jar包中的core-default.xml,默认值为: file:///,则获取的将不是一个DistributedFileSystem的实例,而是一个本地文件系统的客户端对象
HDFS客户端操作数据代码示例:
文件的增删改查
public class HdfsClient {
FileSystem fs = null;
@Before
public void init() throws Exception {
// 构造一个配置参数对象,设置一个参数:我们要访问的hdfs的URI
// 从而FileSystem.get()方法就知道应该是去构造一个访问hdfs文件系统的客户端,以及hdfs的访问地址
// new Configuration();的时候,它就会去加载jar包中的hdfs-default.xml
// 然后再加载classpath下的hdfs-site.xml
Configuration conf = new Configuration();
conf.set("fs.defaultFS", "hdfs://hdp-node01:9000");
/**
* 参数优先级: 1、客户端代码中设置的值 2、classpath下的用户自定义配置文件 3、然后是服务器的默认配置
*/
conf.set("dfs.replication", "3");
// 获取一个hdfs的访问客户端,根据参数,这个实例应该是DistributedFileSystem的实例
// fs = FileSystem.get(conf);
// 如果这样去获取,那conf里面就可以不要配"fs.defaultFS"参数,而且,这个客户端的身份标识已经是hadoop用户
fs = FileSystem.get(new URI("hdfs://hdp-node01:9000"), conf, "hadoop");
}
/**
* 往hdfs上传文件
*
* @throws Exception
*/
@Test
public void testAddFileToHdfs() throws Exception {
// 要上传的文件所在的本地路径
Path src = new Path("g:/redis-recommend.zip");
// 要上传到hdfs的目标路径
Path dst = new Path("/aaa");
fs.copyFromLocalFile(src, dst);
fs.close();
}
/**
* 从hdfs中复制文件到本地文件系统
*
* @throws IOException
* @throws IllegalArgumentException
*/
@Test
public void testDownloadFileToLocal() throws IllegalArgumentException, IOException {
fs.copyToLocalFile(new Path("/jdk-7u65-linux-i586.tar.gz"), new Path("d:/"));
fs.close();
}
@Test
public void testMkdirAndDeleteAndRename() throws IllegalArgumentException, IOException {
// 创建目录
fs.mkdirs(new Path("/a1/b1/c1"));
// 删除文件夹 ,如果是非空文件夹,参数2必须给值true
fs.delete(new Path("/aaa"), true);
// 重命名文件或文件夹
fs.rename(new Path("/a1"), new Path("/a2"));
}
/**
* 查看目录信息,只显示文件
*
* @throws IOException
* @throws IllegalArgumentException
* @throws FileNotFoundException
*/
@Test
public void testListFiles() throws FileNotFoundException, IllegalArgumentException, IOException {
// 思考:为什么返回迭代器,而不是List之类的容器
RemoteIterator<LocatedFileStatus> listFiles = fs.listFiles(new Path("/"), true);
while (listFiles.hasNext()) {
LocatedFileStatus fileStatus = listFiles.next();
System.out.println(fileStatus.getPath().getName());
System.out.println(fileStatus.getBlockSize());
System.out.println(fileStatus.getPermission());
System.out.println(fileStatus.getLen());
BlockLocation[] blockLocations = fileStatus.getBlockLocations();
for (BlockLocation bl : blockLocations) {
System.out.println("block-length:" + bl.getLength() + "--" + "block-offset:" + bl.getOffset());
String[] hosts = bl.getHosts();
for (String host : hosts) {
System.out.println(host);
}
}
System.out.println("--------------为angelababy打印的分割线--------------");
}
}
/**
* 查看文件及文件夹信息
*
* @throws IOException
* @throws IllegalArgumentException
* @throws FileNotFoundException
*/
@Test
public void testListAll() throws FileNotFoundException, IllegalArgumentException, IOException {
FileStatus[] listStatus = fs.listStatus(new Path("/"));
String flag = "d-- ";
for (FileStatus fstatus : listStatus) {
if (fstatus.isFile()) flag = "f-- ";
System.out.println(flag + fstatus.getPath().getName());
}
}
}
通过流的方式访问hdfs
/**
* 相对那些封装好的方法而言的更底层一些的操作方式
* 上层那些mapreduce spark等运算框架,去hdfs中获取数据的时候,就是调的这种底层的api
* @author
*
*/
public class StreamAccess {
FileSystem fs = null;
@Before
public void init() throws Exception {
Configuration conf = new Configuration();
fs = FileSystem.get(new URI("hdfs://hdp-node01:9000"), conf, "hadoop");
}
@Test
public void testDownLoadFileToLocal() throws IllegalArgumentException, IOException{
//先获取一个文件的输入流----针对hdfs上的
FSDataInputStream in = fs.open(new Path("/jdk-7u65-linux-i586.tar.gz"));
//再构造一个文件的输出流----针对本地的
FileOutputStream out = new FileOutputStream(new File("c:/jdk.tar.gz"));
//再将输入流中数据传输到输出流
IOUtils.copyBytes(in, out, 4096);
}
/**
* hdfs支持随机定位进行文件读取,而且可以方便地读取指定长度
* 用于上层分布式运算框架并发处理数据
* @throws IllegalArgumentException
* @throws IOException
*/
@Test
public void testRandomAccess() throws IllegalArgumentException, IOException{
//先获取一个文件的输入流----针对hdfs上的
FSDataInputStream in = fs.open(new Path("/iloveyou.txt"));
//可以将流的起始偏移量进行自定义
in.seek(22);
//再构造一个文件的输出流----针对本地的
FileOutputStream out = new FileOutputStream(new File("c:/iloveyou.line.2.txt"));
IOUtils.copyBytes(in,out,19L,true);
}
/**
* 显示hdfs上文件的内容
* @throws IOException
* @throws IllegalArgumentException
*/
@Test
public void testCat() throws IllegalArgumentException, IOException{
FSDataInputStream in = fs.open(new Path("/iloveyou.txt"));
IOUtils.copyBytes(in, System.out, 1024);
}
}
场景编程
/**在mapreduce 、spark等运算框架中,有一个核心思想就是将运算移往数据,或者说,就是要在并发计算中尽可能让运算本地化,这就需要获取数据所在位置的信息并进行相应范围读取
以下模拟实现:获取一个文件的所有block位置信息,然后读取指定block中的内容*/
@Test
public void testCat() throws IllegalArgumentException, IOException{
FSDataInputStream in = fs.open(new Path("/weblog/input/access.log.10"));
//拿到文件信息
FileStatus[] listStatus = fs.listStatus(new Path("/weblog/input/access.log.10"));
//获取这个文件的所有block的信息
BlockLocation[] fileBlockLocations = fs.getFileBlockLocations(listStatus[0], 0L, listStatus[0].getLen());
//第一个block的长度
long length = fileBlockLocations[0].getLength();
//第一个block的起始偏移量
long offset = fileBlockLocations[0].getOffset();
System.out.println(length);
System.out.println(offset);
//获取第一个block写入输出流
// IOUtils.copyBytes(in, System.out, (int)length);
byte[] b = new byte[4096];
FileOutputStream os = new FileOutputStream(new File("d:/block0"));
while(in.read(offset, b, 0, 4096)!=-1){
os.write(b);
offset += 4096;
if(offset>=length) return;
};
os.flush();
os.close();
in.close();
}