【Leetcode】Weekly 206 检查字符串是否可以通过排序子字符串得到另一个字符串

Leetcode Weekly 206 检查字符串是否可以通过排序子字符串得到另一个字符串

给你两个字符串 s 和 t ,请你通过若干次以下操作将字符串 s 转化成字符串 t :

  • 选择 s 中一个 非空 子字符串并将它包含的字符就地 升序 排序。

比方说,对下划线所示的子字符串进行操作可以由 “14234” 得到 “12344” 。如果可以将字符串 s 变成 t ,返回 true 。否则,返回 false 。一个 子字符串 定义为一个字符串中连续的若干字符。

示例1:

输入:s = "84532", t = "34852"
输出:true
解释:你可以按以下操作将 s 转变为 t :
"84532" (从下标 2 到下标 3-> "84352"
"84352" (从下标 0 到下标 2-> "34852"

示例2:

输入:s = "34521", t = "23415"
输出:true
解释:你可以按以下操作将 s 转变为 t :
"34521" -> "23451"
"23451" -> "23415"

示例3:

输入:s = "12345", t = "12435"
输出:false

示例4:

输入:s = "1", t = "2"
输出:false

提示:

  • s.length == t.length
  • 1 <= s.length <= 10^5
  • s 和 t 都只包含数字字符,即 ‘0’ 到 ‘9’

这道题是第206场周赛的最后一题,也卡了我很久。大意就是,可以若干次对s的一个子串排序,问s能否转化为t?

从数据的大小来看,这道题对复杂度的要求是比较高的,不能超过 O ( n log ⁡ n ) O(n\log n) O(nlogn),所以爆搜肯定是不行的。然后就隐约感觉有一种贪心的处理方式,比如对应t去逐位地转化每一位。

其实首先要认识到一点,对一个子串排序等价于按照某种顺序若干次交换相邻元素(冒泡排序的本质)。那么题目的意思就变成,对于字符串s,能否不断的交换相邻元素来转化成t?

然后就能发现其实贪心策略是可行的,可以从右往左遍历,如果t的最后一位和s的最后一位不同,那肯定得先把这个元素交换到最后,然后处理倒数第二位…依次进行。所以这样就得到了一个解法:从右向左依次遍历t的每一位,如果发现t[i]与s[i]不同,那么就需要把t[i]从s中交换到最后。那么不能转化到s就等价于,把t[i]从s的某个位置交换到i时,路途中遇到了比t[i]更大的元素,这样对两个元素排序的结果就不是交换了。

比如对于第一个例子,从"84532"到"34852",先看最后一位,是满足的。然后是倒数第二位发现是5,那就把s里的5移到倒数第二位,变成"84352"。然后t的倒数第三位是3,那么就要"84352" → \to "48352" → \to “43852”,最后再交换3和4。每一步转移t[i]过程都没有遇到比t[i]更大的元素,所以是成功的。另外,不难发现,s里如果有多个t[i],应该优先取最右边的一个,因为最右边那个会遇到的元素,左边的也会遇到,那不如选最右边这个。

但显然,如果模拟一遍这个交换的过程,是 O ( n 2 ) O(n^2) O(n2)的,肯定是超时的,所以需要思考能不能优化一下。不难发现,我们的目标只是寻找会不会出现一个比t[i]更大的元素,并不一定需要完整模拟一遍。这样的元素的特征是,存在i<j,使得s[i]<s[j],但对应到t中的位置却是target[i]>target[j]。这样当我们遍历t时,想把t[i]移到相应位置时,在s里移动的时候就会遇到s[j]拦在路上,交换失败。而我们刚才的策略里,元素的位置是不会交换的,因为我们从t自右向左遍历时,t[i]取的也是s里最右边的那一个。所以新的算法就出来了:预处理s和t元素的对应关系,检查是否存在i<j使得s[i]<s[j]且target[i]>target[j]。

乍一看如果穷举i和j的话,这好像又是 O ( n 2 ) O(n^2) O(n2)的。。但大可不必!从右向左遍历i,但在检查是否存在这样的j的时候,就不需要遍历了,用一个数组vis标记每一个数字从右向左的最左的出现地点,那遍历到i的时候就只需要检查i+1,i+2直到9的最左位置即可。(最左边的位置对应在t中的位置也是最左,其他元素都在他右边,不需要检查了)。复杂度是 O ( 10 n ) O(10n) O(10n)的。代码如下:

  • 先检查s和t的元素是否一样,否则显然不行
  • f[i][j]的含义是,数字i的第j次出现是在f[i][j]处
  • target[i]表示s[i]应该对应t的什么位置
  • vis记录最后每个数字当前最后一次出现的位置
class Solution {
public:
    bool isTransformable(string s, string t) {
        int n=s.size();
        string ss=s,tt=t;
        sort(ss.begin(),ss.end());
        sort(tt.begin(),tt.end());
        if(ss!=tt) return false;
        int target[n];
        int f[10][n+1],cnt[10];
        memset(cnt,0,sizeof(cnt));
        for(int i=0;i<n;i++){
            cnt[s[i]-'0']++;
            f[s[i]-'0'][cnt[s[i]-'0']]=i;
        }
        memset(cnt,0,sizeof(cnt));
        for(int i=0;i<n;i++){
            cnt[t[i]-'0']++;
            target[f[t[i]-'0'][cnt[t[i]-'0']]]=i;
        }
        int vis[10];
        for(int i=0;i<10;i++) vis[i]=-1;
        for(int i=n-1;i>=0;i--){
            vis[s[i]-'0']=i;
            for(int j=s[i]-'0'+1;j<=9;j++){
                if(vis[j]!=-1){
                    if(target[i]>target[vis[j]]) return false;
                }
            }
        }
        return true;
    }
};
  • 0
    点赞
  • 0
    收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

EagleEyeKestrel

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值