Leetcode P148 排序链表
在 O(n log n) 时间复杂度和常数级空间复杂度下,对链表进行排序。
示例1:
输入: 4->2->1->3
输出: 1->2->3->4
示例2:
输入: -1->5->3->4->0
输出: -1->0->3->4->5
nlgn的时间复杂度容易实现,归并就可以了。但通常我们的归并排序都是用递归实现,是存在 O ( log n ) O(\log n) O(logn)的空间复杂度的。所以要实现常数空间复杂度,只能用迭代法。
迭代实现归并的主要思路其实和递归差不多,从size=1的子数组开始,然后size=2,4…每次处理其实都是一个合并的过程。主要就是如何处理size大小的链表,并处理掉边界情况?
代码的注释大概解释了这个过程:
- 主函数递增size,merge函数合并两个有序链表,cut负责从head提取size大小(如果不够,就提取到tail为止)
- merge和cut比较基础,其中merge返回合并之后的头,cut返回切割之后剩下部分的头
- 维护一个tail,负责接上新拆下来的l和r
- dummy的技巧就不多说了,很常见
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode() : val(0), next(nullptr) {}
* ListNode(int x) : val(x), next(nullptr) {}
* ListNode(int x, ListNode *next) : val(x), next(next) {}
* };
*/
class Solution {
public:
ListNode* sortList(ListNode* head) {
if(!head || !head->next) return head;
int n = 1;
ListNode* cur = head;
while(cur->next) {
cur = cur->next;
n++;
}
ListNode* dummy = new ListNode(-1);
dummy->next = head;
for(int size = 1; size < n; size *= 2) {
cur = dummy->next;
ListNode* tail = dummy;
while(cur) {
ListNode* l = cur;
ListNode* r = cut(l, size);
cur = cut(r, size);
tail->next = merge(l, r);
while(tail->next) {
tail = tail->next;
}
}
}
return dummy->next;
}
ListNode* merge(ListNode* l, ListNode* r) {
ListNode* dummy = new ListNode(-1);
ListNode* p = dummy, *p1 = l, *p2 = r;
while(p1 && p2) {
if(p1->val < p2->val) {
p->next = p1;
p1 = p1->next;
} else {
p->next = p2;
p2 = p2->next;
}
p = p->next;
}
if(p1) p->next = p1;
if(p2) p->next = p2;
return dummy->next;
}
ListNode* cut(ListNode* head, int size) {
ListNode* cur = head;
while(--size) {
if(cur) cur = cur->next;
else break;
}
if(!cur) return NULL;
ListNode* res = cur->next;
cur->next = NULL;
return res;
}
};