Leetcode P1815 得到新鲜甜甜圈的最多组数
有一个甜甜圈商店,每批次都烤 batchSize 个甜甜圈。这个店铺有个规则,就是在烤一批新的甜甜圈时,之前 所有 甜甜圈都必须已经全部销售完毕。给你一个整数 batchSize 和一个整数数组 groups ,数组中的每个整数都代表一批前来购买甜甜圈的顾客,其中 groups[i] 表示这一批顾客的人数。每一位顾客都恰好只要一个甜甜圈。
当有一批顾客来到商店时,他们所有人都必须在下一批顾客来之前购买完甜甜圈。如果一批顾客中第一位顾客得到的甜甜圈不是上一组剩下的,那么这一组人都会很开心。
你可以随意安排每批顾客到来的顺序。请你返回在此前提下,最多 有多少组人会感到开心。
示例1:
输入:batchSize = 3, groups = [1,2,3,4,5,6]
输出:4
解释:你可以将这些批次的顾客顺序安排为 [6,2,4,5,1,3] 。那么第 1,2,4,6 组都会感到开心。
示例2:
输入:batchSize = 4, groups = [1,3,2,5,2,2,1,6]
输出:4
提示:
- 1 ≤ b a t c h S i z e ≤ 9 1\leq batchSize \leq 9 1≤batchSize≤9
- 1 ≤ g r o u p . l e n g t h ≤ 30 1\leq group.length\leq 30 1≤group.length≤30
- 1 ≤ g r o u p [ i ] ≤ 1 0 9 1\leq group[i]\leq 10^9 1≤group[i]≤109
题目的意思其实就是,给一个数组groups,找出任意一种排列中,所有的前缀和s[0] = 0, s[1] = group[0], … ,s[n - 1] = group[0]+ … + group[n - 2],最多能被batchSize整除的个数。
看到batchSize和数组大小的范围很小,应该是从此入手。穷举全排列显然不可行,把30对半分好像也没有什么思路。考虑状态压缩,把原数组模上batchSize变成一个新数组,这个数组等价于给了我们一个频次数组cnt的信息,模batchSize相同的数字是等价的。
这里用到一种没见过的状态压缩方法,把模batchSize为0的组的个数放在个位,这个位的权值是1。把模batchSize为1的组的个数放在第二位,这个位的权值就变成了count[0] + 1,一直这样下去,每一位的权值用一个w表示,可能各不相同。这样我们要求的结果就是dp[sz - 1],每次更新状态dp[mask]的时候,穷举最后一组即可。估算一下大概的复杂度,最复杂的情况里,sz是最大的,sz最大的情况大概是30个数分成3,3,3…十组,这样压缩下来的值不超过4^10,也就是10的6次方级别。每次更新状态穷举最后一个元素的话,大概是10的7次方级别,不会超时。代码如下:
- cnt统计模batchSize的余数频次
- w记录每一位的权值,sz记录状态的最大值
- 处理dp[mask]的时候,sum用来计算mask状态内所有元素对应的前缀和,这样穷举最后一组的时候,用sum减掉最后一组就可以得到这个组前面的前缀和last,从而得知这个组是否开心。
class Solution {
public:
int dp[1111111];
int maxHappyGroups(int batchSize, vector<int>& groups) {
int cnt[batchSize];
memset(cnt, 0, sizeof(cnt));
for (int group: groups) {
cnt[group % batchSize]++;
}
int sz = 1;
int w[11];
w[0] = 1;
for (int i = 0; i < batchSize; i++) {
w[i + 1] = w[i] * (cnt[i] + 1);
sz *= (cnt[i] + 1);
}
dp[0] = 0;
for (int mask = 1; mask < sz; mask++) {
dp[mask] = 0;
int tmp = mask, sum = 0;
int v[10];
memset(v, 0, sizeof(v));
for (int b = 0; b < batchSize; b++) {
if (!cnt[b]) continue;
int x = tmp % (cnt[b] + 1);
v[b] = x;
sum = (sum + x * b) % batchSize;
tmp /= (cnt[b] + 1);
}
for (int b = 0; b < batchSize; b++) {
if (v[b]) {
int last = (sum - b + batchSize) % batchSize;
dp[mask] = max(dp[mask], dp[mask - w[b]] + (last == 0));
}
}
}
return dp[sz - 1];
}
};