Leetcode P1815 得到新鲜甜甜圈的最多组数

8 篇文章 0 订阅
3 篇文章 0 订阅
这篇博客探讨了LeetCode上的第1815题,题目要求找到在特定甜甜圈烘焙规则下,使得最多顾客组感到开心的排列方式。博主通过分析batchSize和groups数组,提出了使用状态压缩的方法解决此问题。通过统计模batchSize的余数频次,构造状态并求解最大值。博客详细阐述了解题思路和代码实现,适合对算法和编程感兴趣的读者深入理解状态压缩的应用。
摘要由CSDN通过智能技术生成

Leetcode P1815 得到新鲜甜甜圈的最多组数

有一个甜甜圈商店,每批次都烤 batchSize 个甜甜圈。这个店铺有个规则,就是在烤一批新的甜甜圈时,之前 所有 甜甜圈都必须已经全部销售完毕。给你一个整数 batchSize 和一个整数数组 groups ,数组中的每个整数都代表一批前来购买甜甜圈的顾客,其中 groups[i] 表示这一批顾客的人数。每一位顾客都恰好只要一个甜甜圈。

当有一批顾客来到商店时,他们所有人都必须在下一批顾客来之前购买完甜甜圈。如果一批顾客中第一位顾客得到的甜甜圈不是上一组剩下的,那么这一组人都会很开心。

你可以随意安排每批顾客到来的顺序。请你返回在此前提下,最多 有多少组人会感到开心。

示例1:

输入:batchSize = 3, groups = [1,2,3,4,5,6]
输出:4
解释:你可以将这些批次的顾客顺序安排为 [6,2,4,5,1,3] 。那么第 1246 组都会感到开心。

示例2:

输入:batchSize = 4, groups = [1,3,2,5,2,2,1,6]
输出:4

提示:

  • 1 ≤ b a t c h S i z e ≤ 9 1\leq batchSize \leq 9 1batchSize9
  • 1 ≤ g r o u p . l e n g t h ≤ 30 1\leq group.length\leq 30 1group.length30
  • 1 ≤ g r o u p [ i ] ≤ 1 0 9 1\leq group[i]\leq 10^9 1group[i]109

题目的意思其实就是,给一个数组groups,找出任意一种排列中,所有的前缀和s[0] = 0, s[1] = group[0], … ,s[n - 1] = group[0]+ … + group[n - 2],最多能被batchSize整除的个数。

看到batchSize和数组大小的范围很小,应该是从此入手。穷举全排列显然不可行,把30对半分好像也没有什么思路。考虑状态压缩,把原数组模上batchSize变成一个新数组,这个数组等价于给了我们一个频次数组cnt的信息,模batchSize相同的数字是等价的。

这里用到一种没见过的状态压缩方法,把模batchSize为0的组的个数放在个位,这个位的权值是1。把模batchSize为1的组的个数放在第二位,这个位的权值就变成了count[0] + 1,一直这样下去,每一位的权值用一个w表示,可能各不相同。这样我们要求的结果就是dp[sz - 1],每次更新状态dp[mask]的时候,穷举最后一组即可。估算一下大概的复杂度,最复杂的情况里,sz是最大的,sz最大的情况大概是30个数分成3,3,3…十组,这样压缩下来的值不超过4^10,也就是10的6次方级别。每次更新状态穷举最后一个元素的话,大概是10的7次方级别,不会超时。代码如下:

  • cnt统计模batchSize的余数频次
  • w记录每一位的权值,sz记录状态的最大值
  • 处理dp[mask]的时候,sum用来计算mask状态内所有元素对应的前缀和,这样穷举最后一组的时候,用sum减掉最后一组就可以得到这个组前面的前缀和last,从而得知这个组是否开心。
class Solution {
public:
    int dp[1111111];
    int maxHappyGroups(int batchSize, vector<int>& groups) {
        int cnt[batchSize];
        memset(cnt, 0, sizeof(cnt));
        for (int group: groups) {
            cnt[group % batchSize]++;
        }
        int sz = 1;
        int w[11];
        w[0] = 1;
        for (int i = 0; i < batchSize; i++) {
            w[i + 1] = w[i] * (cnt[i] + 1);
            sz *= (cnt[i] + 1);
        }
        dp[0] = 0;
        for (int mask = 1; mask < sz; mask++) {
            dp[mask] = 0;
            int tmp = mask, sum = 0;
            int v[10];
            memset(v, 0, sizeof(v));
            for (int b = 0; b < batchSize; b++) {
                if (!cnt[b]) continue;
                int x = tmp % (cnt[b] + 1);
                v[b] = x;
                sum = (sum + x * b) % batchSize;
                tmp /= (cnt[b] + 1);
            }
            for (int b = 0; b < batchSize; b++) {
                if (v[b]) {
                    int last = (sum - b + batchSize) % batchSize;
                    dp[mask] = max(dp[mask], dp[mask - w[b]] + (last == 0));
                }
            }
        }
        return dp[sz - 1];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值