数据挖掘实验(SAS)关联规则挖掘

本文详细介绍了使用SAS进行关联规则挖掘的实验过程,涵盖单一、层次、多维和序列规则挖掘。通过数据预处理和设置不同参数,分析产品间、产品类型间、客户类型与产品间的关系,以及交易序列模式,强调了支持度、置信度和提升度在关联规则挖掘中的重要性。
摘要由CSDN通过智能技术生成

一、实验内容:

1、单一关联规则挖掘:产品之间

2、层次关联规则挖掘:产品类型之间或产品类型与产品之间

3、多维关联规则挖掘:客户类型与产品之间

4、序列规则挖掘

 

关联规则挖掘(Association rule mining)是数据挖掘中最活跃的研究方法之一,可以用来发现事情之间的联系。如果两个或者多个事务之间存在一定的关联关系,那么,其中一个事务就能够通过其他事务预测到。本实验要求根据提供的数据集实现单一关联规则挖掘,层次关联规则挖掘,多维关联规则挖掘,序列规则挖掘,并得出相关结论。

 

使用的数据集:

数据集名称:association2014.csv

数据集字段说明:

CUSTID-客户编号

userType-客户类型

NUMSRVID-产品编号

datetime-交易日期

srvClass-产品类型

二、实验过程:

从SAS顶端的【Solutions】菜单下调出企业数据挖掘【Enterprise Miner】:


接下来,将数据挖掘外接程序示例数据集中的association2014.csv表导入SAS逻辑库。再双击SAS资源管理器中的逻辑库,从【File】菜单下调出【Import Data】对话框:



点击【Next >】,选择csv文件及相应的工作表:


点击【Next >】,选择相应的SAS逻辑库并命名:


点击【Finish】,完成数据导入操作。回到SAS/EM界面&

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值