一、实验内容:
1、单一关联规则挖掘:产品之间
2、层次关联规则挖掘:产品类型之间或产品类型与产品之间
3、多维关联规则挖掘:客户类型与产品之间
4、序列规则挖掘
关联规则挖掘(Association rule mining)是数据挖掘中最活跃的研究方法之一,可以用来发现事情之间的联系。如果两个或者多个事务之间存在一定的关联关系,那么,其中一个事务就能够通过其他事务预测到。本实验要求根据提供的数据集实现单一关联规则挖掘,层次关联规则挖掘,多维关联规则挖掘,序列规则挖掘,并得出相关结论。
使用的数据集:
数据集名称:association2014.csv
数据集字段说明:
CUSTID-客户编号
userType-客户类型
NUMSRVID-产品编号
datetime-交易日期
srvClass-产品类型
二、实验过程:
从SAS顶端的【Solutions】菜单下调出企业数据挖掘【Enterprise Miner】:
接下来,将数据挖掘外接程序示例数据集中的association2014.csv表导入SAS逻辑库。再双击SAS资源管理器中的逻辑库,从【File】菜单下调出【Import Data】对话框:
点击【Next >】,选择csv文件及相应的工作表:
点击【Next >】,选择相应的SAS逻辑库并命名:
点击【Finish】,完成数据导入操作。回到SAS/EM界面&