- 博客(401)
- 收藏
- 关注
原创 【HarmonyOS 6 特别发布】鸿蒙 6 正式登场:功能升级,构建跨设备安全流畅新生态
2025年10月22日华为发布HarmonyOS 6,搭载HarmonyOS 5设备超2300万台。它好看好玩、功能实用、智能便捷、安全可靠、操作丝滑,还支持与iOS设备互传,并公布了升级计划。
2025-10-23 09:00:00
2491
58
原创 【华为Mate XTs 非凡大师】麒麟芯片回归:Mate XTs搭载麒麟9020,鸿蒙5.1体验新境界
华为此次发布会亮点多,Mate XTs非凡大师设计奢华、三折屏出色,科技与体验佳、影像提升;MatePad Mini小机身大视野;HarmonyOS 5.1赋能新品,彰显华为创新实力,给消费者优质之选。
2025-09-05 09:00:00
5037
80
原创 【华为开发者大会2025】HarmonyOS 6 正式发布:全场景智能新体验,开启高效鸿蒙开发时代
2025年6月20日,HDC2025大会发布HarmonyOS 6,鸿蒙生态飞轮加速,带来全新的鸿蒙体验和开发模式,公布了Beta版支持机型,开启万物智联新纪元 。
2025-06-21 07:00:00
9256
81
原创 【华为Pura80系列】鸿蒙生态再升级:Pura 80 系列影像突破,WATCH 5 开启智能手表新纪元
2025年6月11日华为Pura80系列及全场景新品发布会,亮点纷呈,Pura 80系列影像与设计出众,WATCH 5功能创新,鸿蒙5.1加持,全场景生态再升级,科技体验迈向新高度。
2025-06-11 21:24:37
4688
82
原创 【华为鸿蒙电脑】首款鸿蒙电脑发布:MateBook Fold 非凡大师 & MateBook Pro,擎云星河计划启动
2025年5月华为发布nova14系列及鸿蒙电脑,MateBook Fold 非凡大师 和 MateBook Pro,并启动擎云计划,公布HarmonyOS 5.0.1升级规划。
2025-05-20 08:00:00
15023
96
原创 【华为Pura先锋盛典】华为Pura X“阔折叠”手机发布:首次全面搭载HarmonyOS 5
华为新生态手机Pura X以16:10阔型屏与AI眼动交互视觉体验登场,首搭HarmonyOS 5实现40%性能跃升,万亿级大模型驱动智能服务进化。红枫四摄开启多光谱影像时代。鸿蒙生态全面冲刺,电脑新品蓄势待发,开启全场景智慧生态新纪元。
2025-03-21 11:15:15
4690
85
原创 【博客之星2024年度总评选】年度回望:我的博客之路与星光熠熠
在过去的2024年里,我经历了许多的挑战和成长,本文主要是回顾我的个人成长历程,以及在创作和日常生活方面的突破,分享我是如何平衡个人生活与博客创作的经验。
2025-01-20 09:30:00
3787
104
原创 【鸿蒙生态崛起,开发者有哪些机遇与挑战?】HarmonyOS NEXT 引领数字化未来
鸿蒙系统不断创新发展,在智能手机、穿戴、车载、家居等行业领域的应用越来越广泛。HarmonyOS NEXT的发布标志着鸿蒙操作系统进入了全新发展阶段,揭示了在智能生态建设方面的最新成果,原生鸿蒙将为全球用户带来更加智能、互联的数字化生活。
2024-11-08 09:00:00
6642
71
原创 【CANN】开启AI开发新纪元,释放极致计算效率
AI发展使模型复杂、场景多样,开发者面临挑战,华为CANN作为全场景AI计算基础软件平台,是破题关键。它定位关键枢纽,提供极简高效开发体验,有强大算子开发、图引擎及多框架适配能力,性能优势显著。
2025-11-13 09:00:00
637
24
原创 【自然语言处理】预训练06:子词嵌入
本文讲解自然语言处理预训练的子词嵌入。fastText模型用子词嵌入处理词变形,子词为字符n-gram,词向量由子词向量相加得到。字节对编码是压缩算法,能提取可变长度子词,通过迭代合并频繁符号对生成新符号,用于自然语言处理预训练模型输入表示。
2025-11-10 09:00:00
1227
43
原创 【自然语言处理】预训练05:全局向量的词嵌入(GloVe)
本文讲解自然语言处理预训练的全局向量的词嵌入。上下文词共现含丰富语义信息,可预先计算共现统计。GloVe模型基于平方损失对跳元模型修改,用全局统计,中心词与上下文词向量数学等价,还可从共现概率比值理解。
2025-11-07 17:05:43
1966
11
原创 【自然语言处理】预训练04:预训练word2vec
本文讲解自然语言处理预训练的词嵌入(word2vec)的跳元语法模型,通过负采样在PTB数据集预训练。涵盖嵌入层定义、前向传播、二元交叉熵损失、模型训练及词向量应用(如余弦相似度找相似词),最终展示“chip”的相似词结果。
2025-11-04 09:54:58
823
54
原创 【自然语言处理】预训练03:用于预训练词嵌入的数据集
本文讲解word2vec跳元模型与负采样的实现,以PTB数据集为例,依次完成读取数据集、下采样高频词、提取中心词与上下文词、负采样噪声词、构建小批量样本,最后整合为数据加载函数并输出批量数据形状。
2025-11-02 21:37:10
788
33
原创 【自然语言处理】预训练02:近似训练
本文讲解自然语言处理近似训练。为降低词嵌入训练计算复杂度,介绍了负采样和层序softmax两种近似方法。负采样减少梯度计算成本;层序softmax用二叉树结构,使训练步计算代价显著降低。
2025-10-30 09:00:00
1563
45
原创 【IoTDB】时序数据库选型迷茫?Apache IoTDB 为何成工业场景优选?
Apache IoTDB是清华主导的开源时序数据库,专为工业物联网设计,有树形模型与端边云架构等优势,写入、查询、存储表现佳,适合特定场景,可下载社区版快速入门。
2025-10-27 08:30:00
5101
55
原创 【自然语言处理】预训练01:词嵌入(word2vec)
本文讲解自然语言处理预训练中的词嵌入。词向量用于表示单词意义,独热向量无法表达词间相似度。word2vec提出跳元和连续词袋两个自监督模型,分别通过中心词或上下文词预测来训练,得到更优词表示。
2025-10-24 10:15:00
2159
62
原创 【深度学习计算机视觉】14:实战Kaggle比赛:狗的品种识别(ImageNet Dogs)
本文讲解了Kaggle狗品种识别比赛的实战流程,涵盖数据获取与整理、图像增广、微调预训练ResNet-34模型、训练验证及测试集分类,最终生成提交文件,实现120类狗品种的识别任务。
2025-10-20 09:27:29
1151
50
原创 【深度学习计算机视觉】13:实战Kaggle比赛:图像分类 (CIFAR-10)
本文讲解实战Kaggle比赛:图像分类。如何参与CIFAR-10图像分类Kaggle竞赛,包括数据获取、预处理、模型训练及验证,最终生成submission.csv文件并提交结果至Kaggle。
2025-10-17 09:00:00
2688
50
原创 【深度学习计算机视觉】12:风格迁移
本文讲解深度学习计算机视觉的风格迁移技术,用卷积神经网络将内容图像风格转为风格图像风格,涵盖方法、图像处理、特征抽取、损失函数定义、合成图像初始化及模型训练,最终输出风格迁移后的合成图像。
2025-10-15 08:30:00
2350
55
原创 【Kimi】蓝耘元生代 | Kimi K2 大模型探索与实践
本文分享蓝耘元生代MaaS平台主要核心板块,重点介绍Kimi K2大模型优势突出详述在蓝耘平台用其的方法、调用API的方式,且蓝耘为新用户提供注册赠Token等福利。
2025-10-13 08:30:00
1852
50
原创 【深度学习计算机视觉】11:全卷积网络
本文讲解深度学习计算机视觉中的全卷积网络。全卷积网络利用卷积神经网络提取图像特征,通过1×1卷积层转换通道数为类别数,再经转置卷积层恢复图像尺寸,实现从图像像素到像素类别的精确变换。
2025-10-09 09:00:00
1847
56
原创 【深度学习计算机视觉】10:转置卷积
本文讲解深度学习计算机视觉中的转置卷积。转置卷积可逆转下采样导致的空间尺寸减小。它通过卷积核“广播”输入元素来增大输出,与常规卷积操作相反,且其正、反向传播函数可交换。
2025-10-06 14:41:42
5259
61
原创 【深度学习计算机视觉】09:语义分割和数据集
本文讲解语义分割、图像分割和实例分割,重点介绍Pascal VOC2012语义分割数据集处理流程:包括数据读取、随机裁剪预处理、自定义数据集类及数据加载,强调语义分割的像素级标注特性,支持精确图像区域划分。
2025-10-03 10:00:00
1988
46
原创 【海螺AI视频】蓝耘元生代 | AI赋能视频时代:蓝耘MaaS平台与海螺AI的应用实践
本文分享体验蓝耘元生代MaaS平台与海螺AI视频合作产品,介绍二者情况、使用方法、资源福利等,展望其前景与影响 。二者结合打造出低代码开发与开放式创作生态,为多领域用户提供安全高效的智能服务体验,开启AI技术普惠新篇章。
2025-10-01 08:28:04
1876
42
原创 【深度学习计算机视觉】08:区域卷积神经网络(R-CNN)系列
本文讲解深度学习计算机视觉中的区域卷积神经网络。R-CNN开创深度模型目标检测先河,Fast R-CNN改进共享计算,Faster R-CNN引入区域提议网络,Mask R-CNN基于Faster R-CNN,用兴趣区域对齐层提升像素级预测精度。
2025-09-29 08:30:00
1670
39
原创 【深度学习计算机视觉】07:单发多框检测(SSD)
本文讲解深度学习计算机视觉中的单发多框检测。单发多框检测(SSD)模型,包括模型构成、类别与边界框预测层设计、多尺度预测连结、模型训练及预测过程,最终筛选出置信度不低于0.9的预测目标进行输出。
2025-09-26 10:54:15
3376
43
原创 【IoTDB】工业场景下 Apache IoTDB 时序数据库选型与应用
本文讲解工业场景时序数据库选型,阐述Apache IoTDB核心优势,如高效存储、查询优化等,并给出应用指南,助企业在工业场景下合理选用该数据库。
2025-09-24 09:26:14
1160
33
原创 【深度学习计算机视觉】06:目标检测数据集
本文讲解深度学习计算机视觉中的目标检测数据集。收集的香蕉检测数据集可用于演示目标检测模型。用于目标检测的数据加载与图像分类的数据加载类似。但在目标检测中,标签还包含真实边界框的信息,它不出现在图像分类中。
2025-09-22 10:42:43
2868
38
原创 【通义万相】蓝耘元生代 | 文生视频新跃迁:通义万相2.1部署与应用
2025年通义万相2.1开源震动AIGC领域,本文介绍了其发展历程、功能,展示了在蓝耘元生代的部署测试,还提及蓝耘福利,展望其在多领域推动“全民视觉创作时代”来临。
2025-09-18 09:51:21
5129
48
原创 【深度学习计算机视觉】05:多尺度目标检测
本文讲解深度学习计算机视觉中的多尺度目标检测。多尺度下生成不同尺寸锚框检测目标,依特征图形状定中心,用感受野信息预测,多层次学习实现多尺度检测。
2025-09-15 08:30:00
7129
54
原创 【深度学习计算机视觉】04:锚框
本文讲解深度学习计算机视觉中的锚框。目标检测通过生成多尺度锚框覆盖目标,用IoU匹配真实框并标注类别与偏移量,训练后预测时通过非极大值抑制(NMS)筛选最优边界框,实现精准定位与分类。
2025-09-12 09:00:00
1475
49
原创 【深度学习计算机视觉】03:目标检测和边界框
本文讲解深度学习计算机视觉中的目标检测和边界框。目标检测需定位多目标,本文介绍边界框概念,给出两种表示法转换函数,并在示例图像上绘制边界框。
2025-09-09 08:30:00
5911
48
原创 【通义千问】蓝耘元生代 | 蓝耘MaaS平台赋能Qwen2.5-72B-Instruct,自然语言处理新突破
本文探讨蓝耘MaaS平台与Qwen2.5-72B-Instruct模型,该模型在自然语言处理领域表现出色,蓝耘元生代平台具备多种关键特性,展示在蓝耘MaaS平台使用该模型的具体流程和实例。而且蓝耘平台提供千万级免费Token资源。
2025-09-04 12:00:00
1313
34
原创 【DeepSeek】蓝耘元生代 | 蓝耘MaaS平台与DeepSeek-V3.1重构智能应用开发
本文讲解DeepSeek-V3.1与蓝耘MaaS平台的协同创新。前者以轻量化设计等提升推荐准确率,后者凭弹性算力等降低AI门槛,二者融合推动人机交互重构、边缘智能新业态及AI民主化,免费Token资源助力开发者生态建设。
2025-09-01 09:00:00
1616
48
原创 【深度学习计算机视觉】02:微调
本文讲解深度学习计算机视觉的微调。迁移学习中的微调通过预训练模型(如ImageNet)复制参数(除输出层),添加新输出层并训练,在小数据集(如热狗识别)上效果优于随机初始化训练,提升泛化能力。
2025-08-29 09:00:00
3352
44
原创 【深度学习计算机视觉】01:图像增广
本文讲解深度学习计算机视觉中的图像增广。图像增广通过随机翻转、裁剪、调整颜色等方法扩大训练集,减少模型对位置、颜色等属性的依赖,提升泛化能力。示例在CIFAR-10上用ResNet-18结合多GPU训练,验证其效果。
2025-08-27 09:00:00
952
38
原创 【IoTDB】时序数据库选型指南:为何IoTDB成为工业大数据场景的首选?
IoTDB作为工业大数据场景首选。工业场景时序数据库选型需关注写入、存储、查询能力。国外产品存在性能、成本短板,IoTDB以树形模型、高效压缩、端边云协同及AI集成,成为工业智能化首选,提供选型指南及快速入门
2025-08-25 08:30:00
10684
47
原创 【深度学习计算性能】07:参数服务器
本文讲解深度学习计算性能的参数服务器。分布式并行训练算法随GPU和服务器增加变复杂。本文介绍了数据并行、环同步、多机训练方法,并提出用键值存储的push和pull操作解耦关注点。
2025-08-22 08:30:00
2660
40
原创 【深度学习计算性能】06:多GPU的简洁实现
本文讲解深度学习计算性能中的多GPU的简介实现。通过PyTorch的DataParallel实现多GPU并行训练,以ResNet-18为例,对比单/双GPU训练效果,验证了并行化对复杂模型的可扩展性优势,加速了训练过程。
2025-08-19 10:00:00
1287
41
原创 【深度学习计算性能】05:多GPU训练
本文讲解了深度学习训练的并行化方法,重点介绍了数据并行性,通过跨多个GPU拆分数据来并行训练网络,给出了具体实现代码,并展示了在单个和多个GPU上的训练效果。
2025-08-16 08:00:00
2002
45
【机器学习&数据挖掘】离群点检测-源代码+数据集
2025-01-13
【机器学习&数据挖掘】时间序列算法-源代码+数据集
2024-12-31
【机器学习&数据挖掘】智能推荐算法-源代码+数据集
2024-12-28
Python数据分析实验三(基于Scikit-Learn构建数据分析模型)数据集
2024-05-16
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅