Camera用例设计、测试

本文探讨了Camera的测试用例设计,包括功能测试(如AF, AWB, AEC等),压力测试(如monkey, airtest及第三方应用测试),兼容性测试(如第三方相机和直播应用)以及用户场景测试(交互、中断、并发等)。" 82431636,8016083,SNIP:解决目标检测中的尺度不变性问题,"['计算机视觉', '深度学习', '目标检测算法', '预训练模型', '图像金字塔']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Camera常见的用例种类:
1.功能测试,复杂功能测试(AF,AWB,AEC,FLASH,ZOOM,FD,HDR,T2T,Continiousshot…,)
2.压力测试(monkey,airtest ;三方apk压测:长时间微信视频,长时间电话视频等等)
3.兼容性测试(三方camera apk,直播apk,微信语音视频)
4.用户场景测试(交互测试,中断测试,交叉事件测试,并发测试)

### 车辆相机工位标定测试的IT方案 车辆相机工位标定测试是一种确保摄像头安装角度和位置精度的关键过程。以下是针对这一需求设计的一套完整的自动化测试及其实施方法。 #### 1. 测试目标定义 测试的主要目的是验证车辆相机在装配过程中是否达到预期的角度和视野覆盖范围,同时确认其与整车系统的协同性能。此部分可以通过硬件在环技术来模拟实际驾驶环境下的各种工况[^1]。 #### 2. 标定方法概述 为了提高标定效率和准确性,建议采用基于图像处理的目标检测算法配合机械调整装置的方式完成初始粗调;随后利用已知距离的标准图案作为参照物进一步精调直至误差收敛至允许范围内。这种方法不仅提高了工作效率还增强了结果可靠性[^2]。 #### 3. 自动化测试流程说明 - **前置条件设置** - 准备好专用标定板,并将其固定于指定高度和平面之上。 - 启动生产线上的HIL(Hardware-In-The-Loop)仿真设备以提供实时反馈数据流给控制系统使用。 - **执行步骤描述** ```python import cv2 def calibrate_camera(image_path, calibration_pattern): img = cv2.imread(image_path) gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) ret,corners=cv2.findChessboardCorners(gray,(9,6),None) if ret == True: objpoints.append(objp) corners_refined = cv2.cornerSubPix(gray,corners,(11,11),(-1,-1),(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT ,30,.001)) imgpts,jac=cv2.projectPoints(axis,objp,rvecs,tvecs,K,distCoeffs) # Draw and display the axes. corner_img = draw(img,corners,imgpts) cv2.imshow('Calibration',corner_img ) cv2.waitKey(500) return (ret, corners) ``` - 上述代码片段展示了如何通过OpenCV库函数`findChessboardCorners()`找到棋盘格角点从而计算内外参数矩阵的过程[^3]。 #### 4. 缺陷分析框架构建 对于发现的所有问题均需按照既定模板记录下来形成报告文件以便后续改进措施制定。如当某个特定条件下多次重复出现定位偏差过大现象,则可能涉及到光学镜头畸变校正不足或者传感器灵敏度下降等问题待解决[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值