Redis 集群和持久化(四)

1. RDB持久化

因为Redis是内存数据库(也是一个键值对数据库),它将自己的数据库状态储存在内存里面,所以如果不想办法将储存在内存中的数据库状态保存到磁盘里面,那么一旦服务器进程退出,服务器中的数据库状态也会消失不见。为了解决这个问题,Redis提供了RDB持久化功能,这个功能可以将Redis在内存中的数据库状态以压缩的二进制形式保存到磁盘里面,避免数据意外丢失, 并且通过该文件可以还原生成RDB文件时的数据库状态。

a. RDB文件的创建和载入

有两个Redis命令可以用于生成RDB文件,一个是SAVE,另一个是BGSAVE。

SAVE命令会阻塞Redis服务器进程,直到RDB文件创建完毕为止,在服务器进程阻塞期间,服务器不能处理任何命令请求:

redis > SAVA //等待知道RDB文件创建完毕

OK

和SAVE命令直接阻塞服务器进程的做法不同,BGSAVE命令会派生出一个子进程,然后由子进程负责创建RDB文件,服务器进程(父进程)继续处理命令请求

redis > BGSAVA //派生子进程, 并由子进程创建RDB文件

Background saving started

在这里插入图片描述

创建RDB文件的实际工作由rdb.c/rdbSave函数完成。和使用SAVE命令或者BGSAVE命令创建RDB文件不同,RDB文件的载入工作是在服务器启动时自动执行的,所以Redis并没有专门用于载入RDB文件的命令,只要Redis服务器在启动时检测到RDB文件存在,它就会自动载入RDB文件。

另外值得一提的是,因为AOF文件的更新频率通常比RDB文件的更新频率高,所以:

  • 如果服务器开启了AOF持久化功能,那么服务器会优先使用AOF文件来还原数据库状态。
  • 只有在AOF持久化功能处于关闭状态时,服务器才会使用RDB文件来还原数据库状态。

载入RDB文件的实际工作由rdb.c/rdbLoad函数完成。

因为BGSAVE命令的保存工作是由子进程执行的,所以在子进程创建RDB文件的过程中,Redis服务器仍然可以继续处理客户端的命令请求,但是,在BGSAVE命令执行期间,服务器处理SAVE、BGSAVE、BGREWRITEAOF三个命令的方式会和平时有所不同。

  • 如果BGSAVE命令正在执行,客户端发送的BGSAVE命令会被服务器拒绝,因为同时执行两个BGSAVE命令也会产生竞争条件。

  • 如果BGSAVE命令正在执行,那么客户端发送的BGREWRITEAOF命令会被延迟到BGSAVE命令执行完毕之后执行。

  • 如果BGREWRITEAOF命令正在执行,那么客户端发送的BGSAVE命令会被服务器拒绝

服务器在载入RDB文件期间,会一直处于阻塞状态,直到载入工作完成为止。 BGSAVE命令可以在不阻塞服务器进程的情况下执行,所以Redis允许用户通过设置服务器配置的save选项,让服务器每隔一段时间自动执行一次BGSAVE命令,用户可以通过save选项设置多个保存条件,但只要其中任意一个条件被满足,服务器就会执行BGSAVE命令。

# redis 默认策略如下:
# 注意:写了多个 save 策略,只需要满足一个则开启rdb持久化
# 3600 秒内有以1次修改
save 3600 1
# 300 秒内有100次修改
save 300 100
# 60 秒内有10000次修改
save 60 10000

b. RDB文件结构

在这里插入图片描述

  1. RDB文件的最开头是REDIS部分,这个部分的长度为5字节,保存着“REDIS”五个字符。通过这五个字符,程序可以在载入文件时,快速检查所载入的文件是否RDB文件;
  2. db_version长度为4字节,它的值是一个字符串表示的整数,这个整数记录了RDB文件的版本号,比如"0006"就代表RDB文件的版本为第六版
  3. databases部分包含着零个或任意多个数据库,以及各个数据库中的键值对数据
  4. databases部分包含着零个或任意多个数据库,以及各个数据库中的键值对数据
  5. check_sum是一个8字节长的无符号整数,保存着一个校验和,这个校验和是程序通过对REDIS、db_version、databases、EOF四个部分的内容进行计算得出的。服务器在载入RDB文件时,会将载入数据所计算出的校验和与check_sum所记录的校验和进行对比,以此来检查RDB文件是否有出错或者损坏的情况出现。

因为Redis本身带有RDB文件检查工具redis-check-dump,网上也能找到很多处理RDB文件的工具,所以人工分析RDB文件的内容并不是学习Redis所必须掌握的技能。

c. 配置redis.conf

# 关闭 aof 同时也关闭了 aof复写
appendonly no
# 关闭 aof复写
auto-aof-rewrite-percentage 0
# 关闭 混合持久化
aof-use-rdb-preamble no
# 开启 rdb 也就是注释 save “”
# save “”
# save 3600 1
# save 300 100
# save 60 10000

d. 缺点

若采用 rdb 持久化,一旦 redis 宕机,redis将丢失一段时间的数据;RDB 需要经常 fork 子进程来保存数据集到硬盘上,当数据集比较大的时候,fork 的过程是非常耗时的,可能会导致 Redis 在一些毫秒级内不能响应客户端的请求。如果数据集巨大并且 CPU 性能不是很好的情况下,这种情况会持续1秒,AOF 也需要 fork,但是你可以调节重写日志文件的频率
来提高数据集的耐久度。

2. AOF持久化

除了RDB持久化功能之外,Redis还提供了AOF(Append Only File)持久化功能。与RDB持久化通过保存数据库中的键值对来记录数据库状态不同,AOF持久化是通过保存Redis服务器所执行的写命令来记录数据库状态的。

在这里插入图片描述

举个例子,如果我们对空白的数据库执行以下写命令,那么数据库中将包含三个键值对。

redis > SET msg “hello”

OK

redis > SADD fruits “apple” “banana” “cherry”

(integer) 3

redis > RPUSH numbers 128 256 512

(integer) 3

RDB持久化保存数据库状态的方法是将msg、fruits、numbers三个键的键值对保存到RDB文件中,而AOF持久化保存数据库状态的方法则是将服务器执行的SET、SADD、RPUSH三个命令保存到AOF文件中。AOF持久化功能的实现可以分为命令追加(append)、文件写入、文件同步(sync)三个步骤。

append only file
aof 日志存储的是 Redis 服务器的顺序指令序列,aof 日志只记录对内存修改的指令记录;

a. 追加

当AOF持久化功能处于打开状态时,服务器在执行完一个写命令之后,会以协议格式将被执行的写命令追加到服务器状态的aof_buf缓冲区的末尾:

b. 写入和同步

Redis的服务器进程就是一个事件循环(loop),这个循环中的文件事件负责接收客户端的命令请求,以及向客户端发送命令回复,而时间事件则负责执行像serverCron函数这样需要定时运行的函数。因为服务器在处理文件事件时可能会执行写命令,使得一些内容被追加到aof_buf缓冲区里面,所以在服务器每次结束一个事件循环之前,它都会调用flushAppendOnlyFile函数,考虑是否需要将aof_buf缓冲区中的内容写入和保存到AOF文件里面。flushAppendOnlyFile函数的行为由服务器配置的appendfsync选项的值来决定, 如果用户没有主动为appendfsync选项设置值,那么appendfsync选项的默认值为everysec。

在这里插入图片描述

  • 当appendfsync的值为always时,服务器在每个事件循环都要将aof_buf缓冲区中的所有内容写入到AOF文件,并且同步AOF文件,所以always的效率是appendfsync选项三个值当中最慢的一个,但从安全性来说,always也是最安全的,因为即使出现故障停机,AOF持久化也只会丢失一个事件循环中所产生的命令数据。
  • 当appendfsync的值为everysec时,服务器在每个事件循环都要将aof_buf缓冲区中的所有内容写入到AOF文件,并且每隔一秒就要在子线程中对AOF文件进行一次同步。从效率上来讲,everysec模式足够快,并且就算出现故障停机,数据库也只丢失一秒钟的命令数据
  • 当appendfsync的值为no时,服务器在每个事件循环都要将aof_buf缓冲区中的所有内容写入到AOF文件,至于何时对AOF文件进行同步,则由操作系统控制。因为处于no模式下的flushAppendOnlyFile调用无须执行同步操作,所以该模式下的AOF文件写入速度总是最快的,不过因为这种模式会在系统缓存中积累一段时间的写入数据,所以该模式的单次同步时长通常是三种模式中时间最长的。从平摊操作的角度来看,no模式和everysec模式的效率类似,当出现故障停机时,使用no模式的服务器将丢失上次同步AOF文件之后的所有写命令数据。

为了提高文件的写入效率,在现代操作系统中,当用户调用write函数,将一些数据写入到文件的时候,操作系统通常会将写入数据暂时保存在一个内存缓冲区里面,等到缓冲区的空间被填满、或者超过了指定的时限之后,才真正地将缓冲区中的数据写入到磁盘里面。这种做法虽然提高了效率,但也为写入数据带来了安全问题,因为如果计算机发生停机,那么保存在内存缓冲区里面的写入数据将会丢失。为此,系统提供了fsync和fdatasync两个同步函数,它们可以强制让操作系统立即将缓冲区中的数据写入到硬盘里面,从而确保写入数据的安全性。

c. AOF文件的载入和数据还原

因为AOF文件里面包含了重建数据库状态所需的所有写命令,所以服务器只要读入并重新执行一遍AOF文件里面保存的写命令,就可以还原服务器关闭之前的数据库状态。

详细步骤如下:

  • 创建一个不带网络连接的伪客户端(fake client):因为Redis的命令只能在客户端上下文中执行,而载入AOF文件时所使用的命令直接来源于AOF文件而不是网络连接,所以服务器使用了一个没有网络连接的伪客户端来执行AOF文件保存的写命令,伪客户端执行命令的效果和带网络连接的客户端执行命令的效果完全一样。
  • 从AOF文件中分析并读取出一条写命令。
  • 使用伪客户端执行被读出的写命令
  • 一直执行步骤2和步骤3,直到AOF文件中的所有写命令都被处理完毕为止。

在这里插入图片描述

d. aof重写

因为AOF持久化是通过保存被执行的写命令来记录数据库状态的,所以随着服务器运行时间的流逝,AOF文件中的内容会越来越多,文件的体积也会越来越大,如果不加以控制的话,体积过大的AOF文件很可能对Redis服务器、甚至整个宿主计算机造成影响,并且AOF文件的体积越大,使用AOF文件来进行数据还原所需的时间就越多。为了解决AOF文件体积膨胀的问题,Redis提供了AOF文件重写(rewrite)功能。通过该功能,Redis服务器可以创建一个新的AOF文件来替代现有的AOF文件,新旧两个AOF文件所保存的数据库状态相同,但新AOF文件不会包含任何浪费空间的冗余命令,所以新AOF文件的体积通常会比旧AOF文件的体积要小得多。

lpush list xiaoming1
lpush list xiaoming2
lpush list xiaoming3
bgrewriteaof
# 此时会将上面三个命令进行合并成为一个命令
# 合并策略:会先检测键所包含的元素数量,如果超过 64 个会使用多个命令来记录键的值;
hset hash da1 10001
hset hash da2 10002
hset hash da3 10003
hdel hash da1
bgrewriteaof
# 此时aof中不会出现da1 ,设置da1 跟删除da1 变得像从来没操作过

aof_rewrite函数可以很好地完成创建一个新AOF文件的任务,但是,因为这个函数会进行大量的写入操作,所以调用这个函数的线程将被长时间阻塞,因为Redis服务器使用单个线程来处理命令请求,所以如果由服务器直接调用aof_rewrite函数的话,那么在重写AOF文件期间,服务期将无法处理客户端发来的命令请求。

很明显,作为一种辅佐性的维护手段,Redis不希望AOF重写造成服务器无法处理请求,所以Redis决定将AOF重写程序放到子进程里执行,这样做可以同时达到两个目的:

  • 子进程进行AOF重写期间,服务器进程(父进程)可以继续处理命令请求。
  • 子进程带有服务器进程的数据副本,使用子进程而不是线程,可以在避免使用锁的情况下,保证数据的安全性。

不过,使用子进程也有一个问题需要解决,因为子进程在进行AOF重写期间,服务器进程还需要继续处理命令请求,而新的命令可能会对现有的数据库状态进行修改,从而使得服务器当前的数据库状态和重写后的AOF文件所保存的数据库状态不一致。为了解决这种数据不一致问题,Redis服务器设置了一个AOF重写缓冲区,这个缓冲区在服务器创建子进程之后开始使用,当Redis服务器执行完一个写命令之后,它会同时将这个写命令发送给AOF缓冲区和AOF重写缓冲区。

在这里插入图片描述

e. 配置

# 开启 aof
appendonly yes
# 开启 aof复写
auto-aof-rewrite-percentage 100
auto-aof-rewrite-min-size 64mb
# 关闭 混合持久化
aof-use-rdb-preamble no
# 关闭 rdb
save “”

# 1. redis 会记录上次aof复写时的size,如果之后累计超过了原来的size,则会发生aof复写;
auto-aof-rewrite-percentage 100
# 2. 为了避免策略1中,小数据量时产生多次发生aof复写,策略2在满足策略1的前提下需要超过 64mb
才会发生aof复写;
auto-aof-rewrite-min-size 64mb

aof复写在 aof 基础上实现了瘦身,但是 aof 复写的数据量仍然很大;加载会非常慢

3. 混合持久化

从上面知道,rdb 文件小且加载快但丢失多,aof 文件大且加载慢但丢失少;混合持久化是吸取rdb 和 aof 两者优点的一种持久化方案;aof 复写的时候实际持久化的内容是 rdb,等持久化后,持久化期间修改的数据以 aof 的形式附加到文件的尾部;混合持久化实际上是在 aof rewrite 基础上进行优化;所以需要先开启 aof rewrite;

在这里插入图片描述

配置

# 开启 aof
appendonly yes
# 开启 aof复写
auto-aof-rewrite-percentage 100
auto-aof-rewrite-min-size 64mb
# 开启 混合持久化
aof-use-rdb-preamble yes
# 关闭 rdb
save “”
# save 3600 1
# save 300 100
# save 60 10000

应用

  1. MySQL 缓存方案中,redis 不开启持久化,redis 只存储热点数据,数据的依据来源于
    MySQL;若某些数据经常访问需要开启持久化,此时可以选择 rdb 持久化方案,也就是允许
    丢失一段时间数据;
  2. 对数据可靠性要求高,在机器性能,内存也安全 (fork 写时复制 最差的情况下 96G)的情况
    下,可以让 redis 同时开启 aof 和 rdb,注意此时不是混合持久化;redis 重启优先从 aof 加
    载数据,理论上 aof 包含更多最新数据;如果只开启一种,那么使用混合持久化;
  3. 在允许丢失的情况下,亦可采用主redis不持久化(96G 90G),从redis进行持久化;
  4. 伪装从数据

数据安全策略

问题:拷贝持久化文件是否安全?

是安全的,持久化 文件一旦被创建, 就不会进行任何修改。 当服务 器要创建一个新的持久化文件
时, 它先将文件的内容保存在一个临时文件里面, 当临时文件写入完毕时, 程序才使用
rename(2) 原子地用临时文件替换原来的持久化文件。
数据安全要考虑两个问题:

  1. 节点宕机(redis 是内存数据库,宕机数据会丢失)
  2. 磁盘故障 (很少发生)
  • 创建一个定期任务(cron job), 每小时将一个 RDB 文件备份到一个文件夹, 并且每天将一个
    RDB 文件备份到另一个文件夹。
  • 确保快照的备份都带有相应的日期和时间信息, 每次执行定期任务脚本时, 使用 find 命令来删除
    过期的快照: 比如说, 你可以保留最近 48 小时内的每小时快照, 还可以保留最近一两个月的每
    日快照。
  • 至少每天一次, 将 RDB 备份到你的数据中心之外, 或者至少是备份到你运行 Redis 服务器的物理
    机器之外

4. Redis 主从复制

在Redis中,用户可以通过执行SLAVEOF(Redis5.0 以前, 5.0以后使用replicaof )命令或者设置slaveof选项,让一个服务器去复制(replicate)另一个服务器,我们称呼被复制的服务器为主服务器(master),而对主服务器进行复制的服务器则被称为从服务器(slave)

# redis.conf
replicaof 127.0.0.1 7002
info replication

执行上面的命令,服务器将成为127.0.0.1:7002的从服务器, 127.0.0.1:7002将成为主服务器。

如果我们在主服务器上执行以下命令:

redis > SET msg “hello world”

OK

我们既可以在主服务器获取msg的值,也可以在从服务器上获取。

我们使用PSYNC命令来执行复制时的同步操作:

PSYNC命令具有完整重同步(full resynchronization)和部分重同步(partialresynchronization)两种模式:

  • 其中完整重同步用于处理初次复制情况:完整重同步的执行步骤和SYNC命令的执行步骤基本一样,它们都是通过让主服务器创建并发送RDB文件,以及向从服务器发送保存在缓冲区里面的写命令来进行同步。
  • 而部分重同步则用于处理断线后重复制情况:当从服务器在断线后重新连接主服务器时,如果条件允许,主服务器可以将主从服务器连接断开期间执行的写命令发送给从服务器,从服务器只要接收并执行这些写命令,就可以将数据库更新至主服务器当前所处的状态。

PSYNC命令的部分重同步模式解决了旧版复制功能在处理断线后重复制时出现的低效情况.

  • 完整重同步步骤

在这里插入图片描述

  • 部分重同步步骤

在这里插入图片描述

a. 部分重同步的实现(增量复制)

部分重同步功能由以下三个部分构成:

  • 主服务器的复制偏移量(replication offset)和从服务器的复制偏移量
  • 主服务器的复制积压缓冲区(replication backlog)(环形缓冲区)
  • 服务器的运行ID(run ID)

复制偏移量

执行复制的双方——主服务器和从服务器会分别维护一个复制偏移量

  • 主服务器每次向从服务器传播N个字节的数据时,就将自己的复制偏移量的值加上N。
  • 从服务器每次收到主服务器传播来的N个字节的数据时,就将自己的复制偏移量的值加上N。

通过对比主从服务器的复制偏移量,程序可以很容易地知道主从服务器是否处于一致状态:

  • 如果主从服务器处于一致状态,那么主从服务器两者的偏移量总是相同的。
  • 相反,如果主从服务器两者的偏移量并不相同,那么说明主从服务器并未处于一致状态。

复制积压缓冲区(环形缓冲区)

复制积压缓冲区是由主服务器维护的一个固定长度(fixed-size)先进先出(FIFO)队列,默认大小为1MB。

当主服务器进行命令传播时,它不仅会将写命令发送给所有从服务器,还会将写命令入队到复制积压缓冲区里面

在这里插入图片描述

因此,主服务器的复制积压缓冲区里面会保存着一部分最近传播的写命令,并且复制积压缓冲区会为队列中的每个字节记录相应的复制偏移量; 当从服务器重新连上主服务器时,从服务器会通过PSYNC命令将自己的复制偏移量offset发送给主服务器,主服务器会根据这个复制偏移量来决定对从服务器执行何种同步操作:

  • 如果offset偏移量之后的数据(也即是偏移量offset+1开始的数据)仍然存在于复制积压缓冲区里面,那么主服务器将对从服务器执行部分重同步操作
  • 相反,如果offset偏移量之后的数据已经不存在于复制积压缓冲区,那么主服务器将对从服务器执行完整重同步操作

Redis为复制积压缓冲区设置的默认大小为1MB,如果主服务器需要执行大量写命令,又或者主从服务器断线后重连接所需的时间比较长,那么这个大小也许并不合适。如果复制积压缓冲区的大小设置得不恰当,那么PSYNC命令的复制重同步模式就不能正常发挥作用,因此,正确估算和设置复制积压缓冲区的大小非常重要。复制积压缓冲区的最小大小可以根据公式second*write_size_per_second来估算:

  • 其中second为从服务器断线后重新连接上主服务器所需的平均时间(以秒计算)
  • 而write_size_per_second则是主服务器平均每秒产生的写命令数据量(协议格式的写命令的长度总和)。

例如,如果主服务器平均每秒产生1 MB的写数据,而从服务器断线之后平均要5秒才能重新连接上主服务器,那么复制积压缓冲区的大小就不能低于5MB。为了安全起见,可以将复制积压缓冲区的大小设为2*second*write_size_per_second,这样可以保证绝大部分断线情况都能用部分重同步来处理。

# redis.conf
repl-backlog-size 1mb
# 如果所有从库断开连接 3600 秒后没有从库连接,则释放环形缓冲区
repl-backlog-ttl 3600

服务器运行ID

除了复制偏移量和复制积压缓冲区之外,实现部分重同步还需要用到服务器运行ID(run ID):

  • 每个Redis服务器,不论主服务器还是从服务,都会有自己的运行ID。
  • 运行ID在服务器启动时自动生成,由40个随机的十六进制字符组成,例如53b9b28df8042fdc9ab5e3fcbbbabff1d5dce2b3。

当从服务器对主服务器进行初次复制时,主服务器会将自己的运行ID传送给从服务器,而从服务器则会将这个运行ID保存起来。当从服务器断线并重新连上一个主服务器时,从服务器将向当前连接的主服务器发送之前保存的运行ID:

  • 如果从服务器保存的运行ID和当前连接的主服务器的运行ID相同,那么说明从服务器断线之前复制的就是当前连接的这个主服务器,主服务器可以继续尝试执行部分重同步操作。
  • 相反地,如果从服务器保存的运行ID和当前连接的主服务器的运行ID并不相同,那么说明从服务器断线之前复制的主服务器并不是当前连接的这个主服务器,主服务器将对从服务器执行完整重同步操作。

PSYNC命令的实现

PSYNC命令的调用方法有两种:

  • 如果从服务器以前没有复制过任何主服务器,或者之前执行过SLAVEOF no one命令,那么从服务器在开始一次新的复制时将向主服务器发送PSYNC ? -1命令,主动请求主服务器进行完整重同步(因为这时不可能执行部分重同步)。
  • 相反地,如果从服务器已经复制过某个主服务器,那么从服务器在开始一次新的复制时将向主服务器发送PSYNC <runid> <offset>命令:其中runid是上一次复制的主服务器的运行ID,而offset则是从服务器当前的复制偏移量,接收到这个命令的主服务器会通过这两个参数来判断应该对从服务器执行哪种同步操作。

根据情况,接收到PSYNC命令的主服务器会向从服务器返回以下三种回复的其中一种

  • 如果主服务器返回+FULLRESYNC <runid> <offset>回复,那么表示主服务器将与从服务器执行完整重同步操作:其中runid是这个主服务器的运行ID,从服务器会将这个ID保存起来,在下一次发送PSYNC命令时使用;而offset则是主服务器当前的复制偏移量,从服务器会将这个值作为自己的初始化偏移量。
  • 如果主服务器返回+CONTINUE回复,那么表示主服务器将与从服务器执行部分重同步操作,从服务器只要等着主服务器将自己缺少的那部分数据发送过来就可以了。
  • 如果主服务器返回-ERR回复,那么表示主服务器的版本低于Redis 2.8,它识别不了PSYNC命令,从服务器将向主服务器发送SYNC命令,并与主服务器执行完整同步操作。

在这里插入图片描述

5. Redis 哨兵模式

哨兵模式是Redis可用性的解决方案;它由一个或多个 sentinel 实例构成 sentinel 系统;该系统可以监视任意多个主库以及这些主库所属的从库;当主库处于下线状态,自动将该主库所属的某个从库升级为新的主库;客户端来连接集群时,会首先连接 sentinel,通过 sentinel 来查询主节点的地址,然后再连接主节点进行数据交互。当主节点发生故障时,客户端会重新向 sentinel 索要主库地址,sentinel 会将最新的主库地址告诉客户端。通过这样客户端无须重启即可自动完成节点切换。哨兵模式当中涉及多个选举流程采用的时 Raft 算法的领头选举方法的实现;

配置:

# sentinel.cnf
# sentinel 只需指定检测主节点就行了,通过主节点自动发现从节点
sentinel monitor mymaster 127.0.0.1 6379 2
# 判断主观下线时长
sentinel down-after-milliseconds mymaster 30000
# 指定可以有多少个Redis服务同步新的主机,一般而言,这个数字越小同步时间越长,而越大,则对网
络资源要求越高
sentinel parallel-syncs mymaster 1
# 指定故障切换允许的毫秒数,超过这个时间,就认为故障切换失败,默认为3分钟
sentinel failover-timeout mymaster 180000

检测异常

主观下线:

sentinel 会以每秒一次的频率向所有节点(其他sentinel、主节点、以及从节点)发送 ping 消
息,然后通过接收返回判断该节点是否下线;如果在配置指定 down-after-milliseconds 时间内
则被判断为主观下线;

客观下线:

当一个 sentinel 节点将一个主节点判断为主观下线之后,为了确认这个主节点是否真的下线,它
会向其他sentinel 节点进行询问,如果收到一定数量的已下线回复,sentinel 会将主节点判定为客
观下线,并通过领头 sentinel 节点对主节点执行故障转移;

故障转移:

主节点被判定为客观下线后,开始领头 sentinel 选举,需要一半以上的 sentinel 支持,选举领头sentinel后,开始执行对主节点故障转移;

从从节点中选举一个从节点作为新的主节点

通知其他从节点复制连接新的主节点

若故障主节点重新连接,将作为新的主节点的从节点

缺点:

redis 采用异步复制的方式,意味着当主节点挂掉时,从节点可能没有收到全部的同步消息,这部分未同步的消息将丢失。如果主从延迟特别大,那么丢失可能会特别多。sentinel 无法保证消息完全不丢失,但是可以通过配置来尽量保证少丢失。

同时,它的致命缺点是不能进行横向扩展;

# 主库必须有一个从节点在进行正常复制,否则主库就停止对外写服务,此时丧失了可用性

min-slaves-to-write 1
# 这个参数用来定义什么是正常复制,该参数表示如果在10s内没有收到从库反馈,就意味着从库
同步不正常;
min-slaves-max-lag 10

6. Redis cluster集群

Redis集群是Redis提供的分布式数据库方案,集群通过分片(sharding)来进行数据共享,并提供复制和故障转移功能。

a. 节点

一个Redis集群通常由多个节点(node)组成,在刚开始的时候,每个节点都是相互独立的,它们都处于一个只包含自己的集群当中,要组建一个真正可工作的集群,我们必须将各个独立的节点连接起来,构成一个包含多个节点的集群。

连接各个节点的工作可以使用CLUSTER MEET命令来完成,该命令的格式如下

CLUSTER MEET

向一个节点node发送CLUSTER MEET命令,可以让node节点与ip和port所指定的节点进行握手(handshake),当握手成功时,node节点就会将ip和port所指定的节点添加到node节点当前所在的集群中。

启动节点

一个节点就是一个运行在集群模式下的Redis服务器,Redis服务器在启动时会根据cluster-enabled配置选项是否为yes来决定是否开启服务器的集群模式,如图所示。

在这里插入图片描述

节点(运行在集群模式下的Redis服务器)会继续使用所有在单机模式中使用的服务器组件,比如说:

  • 节点会继续使用文件事件处理器来处理命令请求和返回命令回复
  • 节点会继续使用时间事件处理器来执行serverCron函数,而serverCron函数又会调用集群模式特有的clusterCron函数。clusterCron函数负责执行在集群模式下需要执行的常规操作,例如向集群中的其他节点发送Gossip消息,检查节点是否断线,或者检查是否需要对下线节点进行自动故障转移等
  • 节点会继续使用数据库来保存键值对数据,键值对依然会是各种不同类型的对象
  • 节点会继续使用RDB持久化模块和AOF持久化模块来执行持久化工作。
  • 节点会继续使用发布与订阅模块来执行PUBLISH、SUBSCRIBE等命令
  • 节点会继续使用复制模块来进行节点的复制工作。
  • 节点会继续使用Lua脚本环境来执行客户端输入的Lua脚本

除此之外,节点会继续使用redisServer结构来保存服务器的状态,使用redisClient结构来保存客户端的状态,至于那些只有在集群模式下才会用到的数据,节点将它们保存到了cluster.h/clusterNode结构、cluster.h/clusterLink结构,以及cluster.h/clusterState结构里面。

集群数据结构

clusterNode结构保存了一个节点的当前状态,比如节点的创建时间、节点的名字、节点当前的配置纪元、节点的IP地址和端口号等等。每个节点都会使用一个clusterNode结构来记录自己的状态,并为集群中的所有其他节点(包括主节点和从节点)都创建一个相应的clusterNode结构,以此来记录其他节点的状态:

typedef struct clusterNode {
    mstime_t ctime; /* Node object creation time. */
    char name[CLUSTER_NAMELEN]; /* Node name, hex string, sha1-size */
    int flags;      /* CLUSTER_NODE_... */
    uint64_t configEpoch; /* Last configEpoch observed for this node 用于实现故障转移 */
    unsigned char slots[CLUSTER_SLOTS/8]; /* slots handled by this node */
    sds slots_info; /* Slots info represented by string. */
    int numslots;   /* Number of slots handled by this node */
    int numslaves;  /* Number of slave nodes, if this is a master */
    struct clusterNode **slaves; /* pointers to slave nodes */
    struct clusterNode *slaveof; /* pointer to the master node. Note that it
                                    may be NULL even if the node is a slave
                                    if we don't have the master node in our
                                    tables. */
    mstime_t ping_sent;      /* Unix time we sent latest ping */
    mstime_t pong_received;  /* Unix time we received the pong */
    mstime_t data_received;  /* Unix time we received any data */
    mstime_t fail_time;      /* Unix time when FAIL flag was set */
    mstime_t voted_time;     /* Last time we voted for a slave of this master */
    mstime_t repl_offset_time;  /* Unix time we received offset for this node */
    mstime_t orphaned_time;     /* Starting time of orphaned master condition */
    long long repl_offset;      /* Last known repl offset for this node. */
    char ip[NET_IP_STR_LEN];  /* Latest known IP address of this node */
    int port;                   /* Latest known clients port (TLS or plain). */
    int pport;                  /* Latest known clients plaintext port. Only used
                                   if the main clients port is for TLS. */
    int cport;                  /* Latest known cluster port of this node. */
    clusterLink *link;          /* TCP/IP link with this node */
    list *fail_reports;         /* List of nodes signaling this as failing */
} clusterNode;

clusterNode结构的link属性是一个clusterLink结构,该结构保存了连接节点所需的有关信息,比如套接字描述符,输入缓冲区和输出缓冲区:

typedef struct clusterLink {
    mstime_t ctime;             /* Link creation time */
    connection *conn;           /* Connection to remote node */
    sds sndbuf;                 /* Packet send buffer */
    char *rcvbuf;               /* Packet reception buffer */
    size_t rcvbuf_len;          /* Used size of rcvbuf */
    size_t rcvbuf_alloc;        /* Allocated size of rcvbuf */
    struct clusterNode *node;   /* Node related to this link if any, or NULL */
} clusterLink;

redisClient结构和clusterLink结构都有自己的套接字描述符和输入、输出缓冲区,这两个结构的区别在于,redisClient结构中的套接字和缓冲区是用于连接客户端的,而clusterLink结构中的套接字和缓冲区则是用于连接节点的。

最后,每个节点都保存着一个clusterState结构,这个结构记录了在当前节点的视角下,集群目前所处的状态,例如集群是在线还是下线,集群包含多少个节点,集群当前的配置纪元,诸如此类:

typedef struct clusterState {
    clusterNode *myself;  /* This node */
    uint64_t currentEpoch;
    int state;            /* CLUSTER_OK, CLUSTER_FAIL, ... */
    int size;             /* Num of master nodes with at least one slot */
    dict *nodes;          /* Hash table of name -> clusterNode structures */
    dict *nodes_black_list; /* Nodes we don't re-add for a few seconds. */
    clusterNode *migrating_slots_to[CLUSTER_SLOTS];
    clusterNode *importing_slots_from[CLUSTER_SLOTS];
    clusterNode *slots[CLUSTER_SLOTS];
    uint64_t slots_keys_count[CLUSTER_SLOTS];
    rax *slots_to_keys;
    ...
}clusterState

CLUSTER MEET命令的实现

通过向节点A发送CLUSTER MEET命令,客户端可以让接收命令的节点A将另一个节点B添加到节点A当前所在的集群里面:

CLUSTER MEET

收到命令的节点A将与节点B进行握手(handshake),以此来确认彼此的存在,并为将来的进一步通信打好基础:

  • 节点A会为节点B创建一个clusterNode结构,并将该结构添加到自己的clusterState.nodes字典里面。
  • 之后,节点A将根据CLUSTER MEET命令给定的IP地址和端口号,向节点B发送一条MEET消息(message)。
  • 如果一切顺利,节点B将接收到节点A发送的MEET消息,节点B会为节点A创建一个clusterNode结构,并将该结构添加到自己的clusterState.nodes字典里面
  • 之后,节点B将向节点A返回一条PONG消息。
  • 如果一切顺利,节点A将接收到节点B返回的PONG消息,通过这条PONG消息节点A可以知道节点B已经成功地接收到了自己发送的MEET消息。
  • 之后,节点A将向节点B返回一条PING消息。
  • 如果一切顺利,节点B将接收到节点A返回的PING消息,通过这条PING消息节点B可以知道节点A已经成功地接收到了自己返回的PONG消息,握手完成。

在这里插入图片描述

之后,节点A会将节点B的信息通过Gossip协议传播给集群中的其他节点,让其他节点也与节点B进行握手,最终,经过一段时间之后,节点B会被集群中的所有节点认识.

b. 槽指派

Redis集群通过分片的方式来保存数据库中的键值对:集群的整个数据库被分为16384( 2 14 2^{14} 214)个槽(slot),数据库中的每个键都属于这16384个槽的其中一个,集群中的每个节点可以处理0个或最多16384个槽。

当数据库中的16384个槽都有节点在处理时,集群处于上线状态(ok);相反地,如果数据库中有任何一个槽没有得到处理,那么集群处于下线状态(fail)。

通过向节点发送CLUSTER ADDSLOTS命令,我们可以将一个或多个槽指派(assign)给节点负责:

CLUSTER ADDSLOTS [slot…]

举个例子,执行以下命令可以将槽0至槽5000指派给节点一个节点负责:

CLUSTER ADDSLOTS 0 1 2 3 4 …5000

当数据库中的16384个槽都已经被指派给了相应的节点,集群进入上线状态:

记录节点的槽指派信息

clusterNode结构的slots属性和numslot属性记录了节点负责处理哪些槽:

typedef struct clusterNode {
	unsigned char slots[CLUSTER_SLOTS/8]; /* slots handled by this node */
    int numslots;   /* Number of slots handled by this node */
}clusterNode;

slots属性是一个二进制位数组(bit array),这个数组的长度为16384/8=2048个字节,共包含16384个二进制位。Redis以0为起始索引,16383为终止索引,对slots数组中的16384个二进制位进行编号,并根据索引i上的二进制位的值来判断节点是否负责处理槽i:

  • 如果slots数组在索引i上的二进制位的值为1,那么表示节点负责处理槽i。
  • 如果slots数组在索引i上的二进制位的值为0,那么表示节点不负责处理槽i

因为取出和设置slots数组中的任意一个二进制位的值的复杂度仅为O(1),所以对于一个给定节点的slots数组来说,程序检查节点是否负责处理某个槽,又或者将某个槽指派给节点负责,这两个动作的复杂度都是O(1)。至于numslots属性则记录节点负责处理的槽的数量,也即是slots数组中值为1的二进制位的数量。

传播节点的槽指派信息

一个节点除了会将自己负责处理的槽记录在clusterNode结构的slots属性和numslots属性之外,它还会将自己的slots数组通过消息发送给集群中的其他节点,以此来告知其他节点自己目前负责处理哪些槽。

当节点A通过消息从节点B那里接收到节点B的slots数组时,节点A会在自己的clusterState.nodes字典中查找节点B对应的clusterNode结构,并对结构中的slots数组进行保存或者更新。因为集群中的每个节点都会将自己的slots数组通过消息发送给集群中的其他节点,并且每个接收到slots数组的节点都会将数组保存到相应节点的clusterNode结构里面,因此,集群中的每个节点都会知道数据库中的16384个槽分别被指派给了集群中的哪些节点。

记录集群所有槽的指派信息

clusterState结构中的slots数组记录了集群中所有16384个槽的指派信息:

typedef struct clusterState {
	clusterNode *slots[16384];
} clusterState;

slots数组包含16384个项,每个数组项都是一个指向clusterNode结构的指针:

  • 如果slots[i]指针指向NULL,那么表示槽i尚未指派给任何节点
  • 如果slots[i]指针指向一个clusterNode结构,那么表示槽i已经指派给了clusterNode结构所代表的节点。

如果只将槽指派信息保存在各个节点的clusterNode.slots数组里,会出现一些无法高效地解决的问题,而clusterState.slots数组的存在解决了这些问题:

  • 如果节点只使用clusterNode.slots数组来记录槽的指派信息,那么为了知道槽i是否已经被指派,或者槽i被指派给了哪个节点,程序需要遍历clusterState.nodes字典中的所有clusterNode结构,检查这些结构的slots数组,直到找到负责处理槽i的节点为止,这个过程的复杂度为O(N),其中N为clusterState.nodes字典保存的clusterNode结构的数量。在这里插入图片描述

  • 而通过将所有槽的指派信息保存在clusterState.slots数组里面,程序要检查槽i是否已经被指派,又或者取得负责处理槽i的节点,只需要访问clusterState.slots[i]的值即可,这个操作的复杂度仅为O(1)。

举个例子,对于图所示的slots数组来说,如果程序需要知道槽10002被指派给了哪个节点,那么只要访问数组项slots[10002],就可以马上知道槽10002被指派给了节点7002。

在这里插入图片描述

要说明的一点是,虽然clusterState.slots数组记录了集群中所有槽的指派信息,但使用clusterNode结构的slots数组来记录单个节点的槽指派信息仍然是有必要的:

  • 因为当程序需要将某个节点的槽指派信息通过消息发送给其他节点时,程序只需要将相应节点的clusterNode.slots数组整个发送出去就可以了。
  • 另一方面,如果Redis不使用clusterNode.slots数组,而单独使用clusterState.slots数组的话,那么每次要将节点A的槽指派信息传播给其他节点时,程序必须先遍历整个clusterState.slots数组,记录节点A负责处理哪些槽,然后才能发送节点A的槽指派信息,这比直接发送clusterNode.slots数组要麻烦和低效得多

clusterState.slots数组记录了集群中所有槽的指派信息,而clusterNode.slots数组只记录了clusterNode结构所代表的节点的槽指派信息,这是两个slots数组的关键区别所在。

CLUSTER ADDSLOTS命令的实现

CLUSTER ADDSLOTS命令接受一个或多个槽作为参数,并将所有输入的槽指派给接收该命令的节点负责:

CLUSTER ADDSLOTS [slot…]

图展示了一个节点的clusterState结构,clusterState.slots数组中的所有指针都指向NULL,并且clusterNode.slots数组中的所有二进制位的值都是0,这说明当前节点没有被指派任何槽,并且集群中的所有槽都是未指派的。

在这里插入图片描述

当客户端对图所示的节点执行命令:

CLUSTER ADDSLOTS 1 2

将槽1和槽2指派给节点之后,节点的clusterState结构将被更新成图所示的样子:

  • clusterState.slots数组在索引1和索引2上的指针指向了代表当前节点的clusterNode结构。
  • 并且clusterNode.slots数组在索引1和索引2上的位被设置成了1。

在这里插入图片描述

最后,在CLUSTER ADDSLOTS命令执行完毕之后,节点会通过发送消息告知集群中的其他节点,自己目前正在负责处理哪些槽。

c. 在集群中执行命令

在对数据库中的16384个槽都进行了指派之后,集群就会进入上线状态,这时客户端就可以向集群中的节点发送数据命令了。当客户端向节点发送与数据库键有关的命令时,接收命令的节点会计算出命令要处理的数据库键属于哪个槽,并检查这个槽是否指派给了自己:

  • 如果键所在的槽正好就指派给了当前节点,那么节点直接执行这个命令。
  • 如果键所在的槽并没有指派给当前节点,那么节点会向客户端返回一个MOVED错误,指引客户端转向(redirect)至正确的节点,并再次发送之前想要执行的命令。

在这里插入图片描述

计算键属于哪个槽

节点使用以下算法来计算给定键key属于哪个槽:

def slot_number(key):
	return CRC16(key) & 16383

其中CRC16(key)语句用于计算键key的CRC-16校验和,而&16383语句则用于计算出一个介于0至16383之间的整数作为键key的槽号。

使用CLUSTER KEYSLOT<key> 命令可以查看一个给定键属于哪个槽:

判断槽是否由当前节点负责处理

当节点计算出键所属的槽i之后,节点就会检查自己在clusterState.slots数组中的项i,判断键所在的槽是否由自己负责:

  • 如果clusterState.slots[i]等于clusterState.myself,那么说明槽i由当前节点负责,节点可以执行客户端发送的命令。
  • 如果clusterState.slots[i]不等于clusterState.myself,那么说明槽i并非由当前节点负责,节点会根据clusterState.slots[i]指向的clusterNode结构所记录的节点IP和端口号,向客户端返回MOVED错误,指引客户端转向至正在处理槽i的节点。

MOVED错误

当节点发现键所在的槽并非由自己负责处理的时候,节点就会向客户端返回一个MOVED错误,指引客户端转向至正在负责槽的节点。MOVED错误的格式为:

MOVED :

其中slot为键所在的槽,而ip和port则是负责处理槽slot的节点的IP地址和端口号。

一个集群客户端通常会与集群中的多个节点创建套接字连接,而所谓的节点转向实际上就是换一个套接字来发送命令。如果客户端尚未与想要转向的节点创建套接字连接,那么客户端会先根据MOVED错误提供的IP地址和端口号来连接节点,然后再进行转向。

集群模式的redis-cli客户端在接收到MOVED错误时,并不会打印出MOVED错误,而是根据MOVED错误自动进行节点转向,并打印出转向信息,所以我们是看不见节点返回的MOVED错误的;但是,如果我们使用单机(stand alone)模式的redis-cli客户端,再次向节点7000发送相同的命令,那么MOVED错误就会被客户端打印出来。这是因为单机模式的redis-cli客户端不清楚MOVED错误的作用,所以它只会直接将MOVED错误直接打印出来,而不会进行自动转向。

节点数据库的实现

节点和单机服务器在数据库方面的一个区别是,节点只能使用0号数据库,而单机Redis服务器则没有这一限制。

另外,除了将键值对保存在数据库里面之外,节点还会用clusterState结构中的slots_to_keys跳跃表来保存槽和键之间的关系:

typedef struct clusterState {
	rax *slots_to_keys;
    ...
}clusterState

在这里插入图片描述

slots_to_keys跳跃表每个节点的分值(score)都是一个槽号,而每个节点的成员(member)都是一个数据库键:

  • 每当节点往数据库中添加一个新的键值对时,节点就会将这个键以及键的槽号关联到slots_to_keys跳跃表。
  • 当节点删除数据库中的某个键值对时,节点就会在slots_to_keys跳跃表解除被删除键与槽号的关联。

通过在slots_to_keys跳跃表中记录各个数据库键所属的槽,节点可以很方便地对属于某个或某些槽的所有数据库键进行批量操作,例如命令CLUSTER GETKEYSINSLOT<slot><count>命令可以返回最多count个属于槽slot的数据库键,而这个命令就是通过遍历slots_to_keys跳跃表来实现的。

在这里插入图片描述

d. 重新分片

Redis集群的重新分片操作可以将任意数量已经指派给某个节点(源节点)的槽改为指派给另一个节点(目标节点),并且相关槽所属的键值对也会从源节点被移动到目标节点。重新分片操作可以在线(online)进行,在重新分片的过程中,集群不需要下线,并且源节点和目标节点都可以继续处理命令请求。

重新分片的实现原理

Redis集群的重新分片操作是由Redis的集群管理软件redis-trib负责执行的,Redis提供了进行重新分片所需的所有命令,而redis-trib则通过向源节点和目标节点发送命令来进行重新分片操作。

redis-trib对集群的单个槽slot进行重新分片的步骤如下:

  • redis-trib对目标节点发送CLUSTER SETSLOT<slot>IMPORTING<source_id>命令,让目标节点准备好从源节点导入(import)属于槽slot的键值对。
  • redis-trib对源节点发送CLUSTER SETSLOT<slot>MIGRATING<target_id>命令,让源节点准备好将属于槽slot的键值对迁移(migrate)至目标节点。
  • redis-trib向源节点发送CLUSTER GETKEYSINSLOT<slot><count>命令,获得最多count个属于槽slot的键值对的键名(key name)。
  • 对于步骤3获得的每个键名,redis-trib都向源节点发送一个MIGRATE<target_ip><target_port><key_name>0<timeout>命令,将被选中的键原子地从源节点迁移至目标节点。
  • 重复执行步骤3和步骤4,直到源节点保存的所有属于槽slot的键值对都被迁移至目标节点为止。
  • redis-trib向集群中的任意一个节点发送CLUSTER SETSLOT<slot>NODE<target_id>命令,将槽slot指派给目标节点,这一指派信息会通过消息发送至整个集群,最终集群中的所有节点都会知道槽slot已经指派给了目标节点。

在这里插入图片描述

如果重新分片涉及多个槽,那么redis-trib将对每个给定的槽分别执行上面给出的步骤。

在这里插入图片描述

e. ASK错误

在进行重新分片期间,源节点向目标节点迁移一个槽的过程中,可能会出现这样一种情况:属于被迁移槽的一部分键值对保存在源节点里面,而另一部分键值对则保存在目标节点里面。当客户端向源节点发送一个与数据库键有关的命令,并且命令要处理的数据库键恰好就属于正在被迁移的槽时:

  • 源节点会先在自己的数据库里面查找指定的键,如果找到的话,就直接执行客户端发送的命令。
  • 相反地,如果源节点没能在自己的数据库里面找到指定的键,那么这个键有可能已经被迁移到了目标节点,源节点将向客户端返回一个ASK错误,指引客户端转向正在导入槽的目标节点,并再次发送之前想要执行的命令。

在这里插入图片描述

和接到MOVED错误时的情况类似,集群模式的redis-cli在接到ASK错误时也不会打印错误,而是自动根据错误提供的IP地址和端口进行转向动作。如果想看到节点发送的ASK错误的话,可以使用单机模式的redis-cli客户端:

CLUSTER SETSLOT IMPORTING命令的实现

clusterState结构的importing_slots_from数组记录了当前节点正在从其他节点导入的槽:

typedef struct clusterState {
	  clusterNode *importing_slots_from[16384];
} clusterState;

如果importing_slots_from[i]的值不为NULL,而是指向一个clusterNode结构,那么表示当前节点正在从clusterNode所代表的节点导入槽i。在对集群进行重新分片的时候,向目标节点发送命令

CLUSTER SETSLOT IMPORTING <source_id>

可以将目标节点clusterState.importing_slots_from[i]的值设置为source_id所代表节点的clusterNode结构。

CLUSTER SETSLOT MIGRATING命令的实现

clusterState结构的migrating_slots_to数组记录了当前节点正在迁移至其他节点的槽:

typedef struct clusterState {
    clusterNode *migrating_slots_to[16384];
} clusterState;

如果migrating_slots_to[i]的值不为NULL,而是指向一个clusterNode结构,那么表示当前节点正在将槽i迁移至clusterNode所代表的节点。在对集群进行重新分片的时候,向源节点发送命令:

CLUSTER SETSLOT MIGRATING<source_id>

可以将源节点clusterState.migrating_slots_to[i]的值设置为target_id所代表节点的clusterNode结构。

ASK错误

如果节点收到一个关于键key的命令请求,并且键key所属的槽i正好就指派给了这个节点,那么节点会尝试在自己的数据库里查找键key,如果找到了的话,节点就直接执行客户端发送的命令。与此相反,如果节点没有在自己的数据库里找到键key,那么节点会检查自己的clusterState.migrating_slots_to[i],看键key所属的槽i是否正在进行迁移,如果槽i的确在进行迁移的话,那么节点会向客户端发送一个ASK错误,引导客户端到正在导入槽i的节点去查找键key。

接到ASK错误的客户端会根据错误提供的IP地址和端口号,转向至正在导入槽的目标节点,然后首先向目标节点发送一个ASKING命令,之后再重新发送原本想要执行的命令。

ASKING命令

ASKING命令唯一要做的就是打开发送该命令的客户端的REDIS_ASKING标识, 在一般情况下,如果客户端向节点发送一个关于槽i的命令,而槽i又没有指派给这个节点的话,那么节点将向客户端返回一个MOVED错误;但是,如果节点的clusterState.importing_slots_from[i]显示节点正在导入槽i,并且发送命令的客户端带有REDIS_ASKING标识,那么节点将破例执行这个关于槽i的命令一次,图展示了这个判断过程。

在这里插入图片描述

当客户端接收到ASK错误并转向至正在导入槽的节点时,客户端会先向节点发送一个ASKING命令,然后才重新发送想要执行的命令,这是因为如果客户端不发送ASKING命令,而直接发送想要执行的命令的话,那么客户端发送的命令将被节点拒绝执行,并返回MOVED错误。

f. 复制与故障转移

Redis集群中的节点分为主节点(master)和从节点(slave),其中主节点用于处理槽,而从节点则用于复制某个主节点,并在被复制的主节点下线时,代替下线主节点继续处理命令请求

设置从节点

CLUSTER REPLICATE <node_id>

可以让接收命令的节点成为node_id所指定节点的从节点,并开始对主节点进行复制:

  • 接收到该命令的节点首先会在自己的clusterState.nodes字典中找到node_id所对应节点的clusterNode结构,并将自己的clusterState.myself.slaveof指针指向这个结构,以此来记录这个节点正在复制的主节点:
typedef struct clusterNode {
//如果这是一个从节点,那么指向主节点
   struct clusterNode *slaveof; 
}clusterNode;
  • 然后节点会修改自己在clusterState.myself.flags中的属性,关闭原本的REDIS_NODE_MASTER标识,打开REDIS_NODE_SLAVE标识,表示这个节点已经由原来的主节点变成了从节点。
  • 最后,节点会调用复制代码,并根据clusterState.myself.slaveof指向的clusterNode结构所保存的IP地址和端口号,对主节点进行复制。因为节点的复制功能和单机Redis服务器的复制功能使用了相同的代码,所以让从节点复制主节点相当于向从节点发送命令SLAVEOF。

一个节点成为从节点,并开始复制某个主节点这一信息会通过消息发送给集群中的其他节点,最终集群中的所有节点都会知道某个从节点正在复制某个主节点。集群中的所有节点都会在代表主节点的clusterNode结构的slaves属性和numslaves属性中记录正在复制这个主节点的从节点名单:

typedef struct clusterNode {
//正在复制这个主节点的从节点数量
   int numslaves;  
   //每个数组项指向一个正在复制这个主节点的从节点的clusterNode结构
   struct clusterNode **slaves; 
}clusterNode;

故障检测

集群中的每个节点都会定期地向集群中的其他节点发送PING消息,以此来检测对方是否在线,如果接收PING消息的节点没有在规定的时间内,向发送PING消息的节点返回PONG消息,那么发送PING消息的节点就会将接收PING消息的节点标记为疑似下线(probable fail,PFAIL)。

集群中的各个节点会通过互相发送消息的方式来交换集群中各个节点的状态信息,例如某个节点是处于在线状态、疑似下线状态(PFAIL),还是已下线状态(FAIL)。当一个主节点A通过消息得知主节点B认为主节点C进入了疑似下线状态时,主节点A会在自己的clusterState.nodes字典中找到主节点C所对应的clusterNode结构,并将主节点B的下线报告(failure report)添加到clusterNode结构的fail_reports链表里面:

typedef struct clusterNode {
    list *fail_reports;         /* List of nodes signaling this as failing */
}clusterNode;

每个下线报告由一个clusterNodeFailReport结构表示:

/* This structure represent elements of node->fail_reports. */
typedef struct clusterNodeFailReport {
    struct clusterNode *node;  /* Node reporting the failure condition. */
    mstime_t time;             /* Time of the last report from this node. */
} clusterNodeFailReport;

如果在一个集群里面,半数以上负责处理槽的主节点都将某个主节点x报告为疑似下线,那么这个主节点x将被标记为已下线(FAIL),将主节点x标记为已下线的节点会向集群广播一条关于主节点x的FAIL消息,所有收到这条FAIL消息的节点都会立即将主节点x标记为已下线。

故障转移

当一个从节点发现自己正在复制的主节点进入了已下线状态时,从节点将开始对下线主节点进行故障转移,以下是故障转移的执行步骤:

  • 复制下线主节点的所有从节点里面,会有一个从节点被选中。
  • 被选中的从节点会执行SLAVEOF no one命令,成为新的主节点。
  • 新的主节点会撤销所有对已下线主节点的槽指派,并将这些槽全部指派给自己。
  • 新的主节点向集群广播一条PONG消息,这条PONG消息可以让集群中的其他节点立即知道这个节点已经由从节点变成了主节点,并且这个主节点已经接管了原本由已下线节点负责处理的槽。
  • 新的主节点开始接收和自己负责处理的槽有关的命令请求,故障转移完成。

选举新的主节点

新的主节点是通过选举产生的。

  • 集群的配置纪元是一个自增计数器,它的初始值为0
  • 当集群里的某个节点开始一次故障转移操作时,集群配置纪元的值会被增一。
  • 对于每个配置纪元,集群里每个负责处理槽的主节点都有一次投票的机会,而第一个向主节点要求投票的从节点将获得主节点的投票。
  • 当从节点发现自己正在复制的主节点进入已下线状态时,从节点会向集群广播一条CLUSTERMSG_TYPE_FAILOVER_AUTH_REQUEST消息,要求所有收到这条消息、并且具有投票权的主节点向这个从节点投票。
  • 如果一个主节点具有投票权(它正在负责处理槽),并且这个主节点尚未投票给其他从节点,那么主节点将向要求投票的从节点返回一条CLUSTERMSG_TYPE_FAILOVER_AUTH_ACK消息,表示这个主节点支持从节点成为新的主节点。
  • 每个参与选举的从节点都会接收CLUSTERMSG_TYPE_FAILOVER_AUTH_ACK消息,并根据自己收到了多少条这种消息来统计自己获得了多少主节点的支持。
  • 如果集群里有N个具有投票权的主节点,那么当一个从节点收集到大于等于N/2+1张支持票时,这个从节点就会当选为新的主节点。
  • 因为在每一个配置纪元里面,每个具有投票权的主节点只能投一次票,所以如果有N个主节点进行投票,那么具有大于等于N/2+1张支持票的从节点只会有一个,这确保了新的主节点只会有一个。
  • 如果在一个配置纪元里面没有从节点能收集到足够多的支持票,那么集群进入一个新的配置纪元,并再次进行选举,直到选出新的主节点为止。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值