题目是这样的:给你一个单链表的表头,再给你其中某个结点的指针,要你删除这个结点,条件是你的程序必须在O(1)的时间内完成删除。
由于有的同学对链表还不是很熟悉,本文尽量描述的通俗易懂,老鸟请直接跳过前面一大段。
链表结构如下:
struct node
{
int val;
node* next;
};
题目不是很难,很快就能想到好办法:)
首先回顾一下普通的删除方法,首先通过表头,找到待删除结点(设为B)的前一个结点(设为A),将A的指向改一下就行,然后删除掉B结点就行了。要删除的结点一定要delete掉,这不仅是个好习惯,而且能避免将来项目中可能造成的内存泄露的严重问题。
void DeleteNode_On(node *LinkList, node *p)
{
printf("delete:%d\n", p->val);
node *s = LinkList;
while(s->next != p)
s = s->next;
s->next = s->next->next;
delete(p);
}
这个算法主要耗时在于查找前一个结点,所以是O(n)的算法。
那么既然要求是O(1),显然不能再去for一遍了,联想到数组的删除,这个问题就比较好解决了。
首先我们很容易就能得到待删除结点,即B结点的后一个结点C,然后将C的值赋值给B结点的值,相当于数组删除时候的覆盖,现在B结点和C结点一模一样了,接下来就相当简单了吧,我们不删B,直接利用B删掉C就行了,方法简单,时间O(1)。
但是仔细想想这个算法有个很明显的缺陷,如果待删除结点是最后一个结点呢?这个时候似乎没有什么好的解决办法,只能老老实实的O(n)了。现在我们来看看平均时间复杂度:
符合题目要求。
void DeleteNode_O1(node *LinkList, node *p)
{
printf("delete:%d\n", p->val);
if(p->next != NULL) //如果p不是末尾结点, 则让后一个结点覆盖掉p, 然后删除后一个结点
{
p->val = p->next->val;
node *tmp = p->next;
p->next = p->next->next;
delete(tmp);
}
else // 如果p是末尾结点, 则找到p的前一个结点然后正常删除
{
node *s = LinkList;
while(s->next != p)
s = s->next;
s->next = s->next->next;
delete(p);
}
}
最后附上完整测试代码:
#include<iostream>
using namespace std;
struct node
{
int val;
node* next;
};
void CreateLinkList(node *LinkList)
{
node *s = LinkList;
for(int i = 0; i < 10; i++)
{
node *t = new node;
t->val = i;
t->next = NULL;
s = s->next = t;
}
}
void ShowLinkList(node * LinkList)
{
node *s = LinkList;
while(s = s->next)
printf("%d ", s->val);
putchar(10);
}
void DeleteNode_On(node *LinkList, node *p)
{
printf("delete:%d\n", p->val);
node *s = LinkList;
while(s->next != p)
s = s->next;
s->next = s->next->next;
delete(p);
}
void DeleteNode_O1(node *LinkList, node *p)
{
printf("delete:%d\n", p->val);
if(p->next != NULL) //如果p不是末尾结点, 则让后一个结点覆盖掉p, 然后删除后一个结点
{
p->val = p->next->val;
node *tmp = p->next;
p->next = p->next->next;
delete(tmp);
}
else // 如果p是末尾结点, 则找到p的前一个结点然后正常删除
{
node *s = LinkList;
while(s->next != p)
s = s->next;
s->next = s->next->next;
delete(p);
}
}
int main()
{
node *LinkList = new node;
CreateLinkList(LinkList);
ShowLinkList(LinkList);
node *p = LinkList->next;
for(int i = 0; i < 3; i++)
p = p->next;
DeleteNode_On(LinkList, p);
ShowLinkList(LinkList);
p = LinkList->next;
for(int i = 0; i < 8; i++)
p = p->next;
DeleteNode_O1(LinkList, p);
ShowLinkList(LinkList);
p = LinkList->next;
for(int i = 0; i < 4; i++)
p = p->next;
DeleteNode_O1(LinkList, p);
ShowLinkList(LinkList);
getchar();
return 0;
}