hdu 3360 National Treasures 二分行列匹配

题目叫国家宝藏?!23333...

很棒的行列匹配。给出一张图,mat[i][j] != 0表示这是一个价值为mat[i][j]的宝物,每个宝物需要一些人看守,最多为12人,即

而看守相对应的位置编号则需要根据宝物价值转换为二进制之后的需求确定,题目中的595 (in binary 1001010011)对应的位置如下

然后每一个位置都需要一个看守或者宝物。求的是在已有宝物与看守的基础上,需要雇最少的看守。(有必要的话把现有位置的宝物去掉而换上新雇来的看守)。

分析:建图的话,就是分成行列编号,然后对于每一对位置矛盾的建边(单向),求最大匹配即可。

P:再次声明了,行列匹配的话需要编号这一玩意儿~

#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<vector>

using namespace std;

#define N 55
#define M 2505

vector<int> v[M];

int mat[N][N];
int a[N][N];
int link[M], vis[M];
int r, c;
int n, m;

int dir[12][2]={-1,-2,-2,-1,-2,1,-1,2,1,2,2,1,2,-1,1,-2,-1,0,0,1,1,0,0,-1};

void init()
{
	for ( int i = 1; i <= n; i++ )
	{
		v[i].clear();
	}
	memset(a, 0, sizeof(a));
	m = n = 1;
}

bool ok( int x, int y )
{
	return (x <= r && x >= 1 && y <= c && y >= 1);
}

void build( int val, int x, int y, int f)
{
	for( int i = 0; i < 12; i++ )
	{
		if( (val >> i) & 1 )
		{
			int xx = dir[i][0] + x;
			int yy = dir[i][1] + y;
			if( ok(xx, yy) && a[xx][yy] )
			{
				int u = a[x][y];
				int to = a[xx][yy];
				if( f )
				{
					v[u].push_back(to);
				}
				else
				{
					v[to].push_back(u);
				}
			}
		}
	}
}

int dfs( int u )
{
	for ( int i = 0; i < v[u].size(); i++)
	{
		int to = v[u][i];
		if( !vis[to] )
		{
			vis[to] = 1;
			if( link[to] == -1 || dfs( link[to] ) )
			{
				link[to] = u;
				return 1;
			}
		}
	}
	return 0;
}

int main()
{
	int tt = 1;
	while(~scanf("%d %d", &r, &c) && (r || c))
	{
		init();
		for ( int i = 1; i <= r; i++ )
		{
			for( int j = 1; j <= c; j++ )
			{
				scanf("%d", &mat[i][j]);
				if( mat[i][j] != -1 )
				{
					if ( (i + j) % 2 )
						a[i][j] = n++;
					else
						a[i][j] = m++;
				}
			}
		}
		for( int i = 1; i <= r; i++ )
		{
			for( int j = 1; j <= c; j++ )
			{
				if( a[i][j] )
				{
					build(mat[i][j], i, j, (i+j)%2);
				}
			}
		}
		memset(link, -1, sizeof(link));
		int ans = 0;
		for ( int i = 1; i < n; i++ )
		{
			memset(vis, 0, sizeof(vis));
			ans += dfs(i);
		}
		printf("%d. %d\n", tt++, ans);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值