Codeforces Round #305 (Div. 2) B D

B - Mike and Fun  题意:n*m的01矩阵,每次可修改a[x][y],即0变1,1变0。q次修改,问每次修改后连续1最长那行1的长度。

修改时每次暴力修改每行即可

#include <map>
#include <set>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream>
#include <algorithm>
using namespace std;

#define lson l, mid, rt << 1
#define rson mid + 1, r, rt << 1 | 1
#define ls rt << 1
#define rs rt << 1 | 1
#define pi acos(-1.0)
#define eps 1e-8
#define asd puts("sdfsdfsdfsdfsdfsdf");
typedef __int64 ll;
typedef pair<int, int> pll;
const int N = 550;

int a[N][N];
int s[N];
int n, m, q;

int main()
{
    while( ~scanf("%d%d%d", &n, &m, &q) ) {
        memset( s, 0, sizeof( s ) );
        for( int i = 1; i <= n; ++i ) {
            int tmp = 0;
            for( int j = 1; j <= m; ++j ) {
                scanf("%d", &a[i][j]);
                if( a[i][j] )
                    tmp++;
                else
                    tmp = 0;
                s[i] = max( tmp, s[i] );
            }
        }
        int x, y, ans;
        while( q-- ) {
            scanf("%d%d", &x, &y);
            a[x][y] = 1 - a[x][y];
            s[x] = 0;
            int tmp = 0;
            for( int i = 1; i <= m; ++i ) {
                if( a[x][i] )
                    tmp++;
                else
                    tmp = 0;
                s[x] = max( tmp, s[x] );
            }
            //printf("s[x]: %d\n", s[x]);
            ans = -1;
            for( int i = 1; i <= n; ++i )
                ans = max( ans, s[i] );
            printf("%d\n", ans);
        }
    }
    return 0;
}

D - Mike and Feet  题意:给出一个整数序列,分别长度从1~n的区间的最小值里的最大值,比如长度为2的区间有n-1个,n-1的区间都有一个最小值,输出最大的那个。

单调栈预处理出,以每个点为最小值的向左和向右的最远位置。因为已知左右距离,那么以包括该点在内的某一段长度的区间(从L【i】到R【i】,LR即记录序列每个点的最左最右距离)的最小值就能确定了(就是a[i])。更新完毕后,最后再遍历一次区间,因为长度为 x 的区间的最优值一点包含在长度为 x+1的区间内。更新一下即可。

typedef pair<int, int> pll;
const int N = 200010;

int L[N], R[N];
pll s[N];
int top;
int a[N], dp[N];

int main()
{
    int n;
    while( ~scanf("%d", &n) ) {
        top = -1;
        for( int i = 1; i <= n; ++i ) {
            scanf("%d", &a[i]);
        }
        s[++top] = make_pair(-1, 0);
        for( int i = 1; i <= n; ++i ) {
            while( top > -1 && s[top].first >= a[i] ) {
                top--;
            }
            L[i] = s[top].second;
            s[++top] = make_pair( a[i], i );
        }
        top = -1;
        s[++top] = make_pair( -1, n+1 );
        for( int i = n; i >= 1; --i ) {
            while( top > -1 && s[top].first >= a[i] ) {
                top--;
            }
            R[i] = s[top].second;
            s[++top] = make_pair( a[i], i );
        }
        memset( dp, -1, sizeof( dp ) );    // x为包括 i 点 在内向左向右延伸的距离,dp[x] 是表示 长度为 x 的最优解
        for( int i = 1; i <= n; ++i ) {
            dp[ R[i]-L[i]-1 ] = max( dp[ R[i]-L[i]-1 ], a[i] );
        }
        for( int i = n-1; i >= 1; --i )
            dp[i] = max( dp[i+1], dp[i] );
        for( int i = 1; i <= n; ++i )
            printf("%d ", dp[i]);
        puts("");
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值