B - Mike and Fun 题意:n*m的01矩阵,每次可修改a[x][y],即0变1,1变0。q次修改,问每次修改后连续1最长那行1的长度。
修改时每次暴力修改每行即可
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream>
#include <algorithm>
using namespace std;
#define lson l, mid, rt << 1
#define rson mid + 1, r, rt << 1 | 1
#define ls rt << 1
#define rs rt << 1 | 1
#define pi acos(-1.0)
#define eps 1e-8
#define asd puts("sdfsdfsdfsdfsdfsdf");
typedef __int64 ll;
typedef pair<int, int> pll;
const int N = 550;
int a[N][N];
int s[N];
int n, m, q;
int main()
{
while( ~scanf("%d%d%d", &n, &m, &q) ) {
memset( s, 0, sizeof( s ) );
for( int i = 1; i <= n; ++i ) {
int tmp = 0;
for( int j = 1; j <= m; ++j ) {
scanf("%d", &a[i][j]);
if( a[i][j] )
tmp++;
else
tmp = 0;
s[i] = max( tmp, s[i] );
}
}
int x, y, ans;
while( q-- ) {
scanf("%d%d", &x, &y);
a[x][y] = 1 - a[x][y];
s[x] = 0;
int tmp = 0;
for( int i = 1; i <= m; ++i ) {
if( a[x][i] )
tmp++;
else
tmp = 0;
s[x] = max( tmp, s[x] );
}
//printf("s[x]: %d\n", s[x]);
ans = -1;
for( int i = 1; i <= n; ++i )
ans = max( ans, s[i] );
printf("%d\n", ans);
}
}
return 0;
}
D - Mike and Feet 题意:给出一个整数序列,分别长度从1~n的区间的最小值里的最大值,比如长度为2的区间有n-1个,n-1的区间都有一个最小值,输出最大的那个。
单调栈预处理出,以每个点为最小值的向左和向右的最远位置。因为已知左右距离,那么以包括该点在内的某一段长度的区间(从L【i】到R【i】,LR即记录序列每个点的最左最右距离)的最小值就能确定了(就是a[i])。更新完毕后,最后再遍历一次区间,因为长度为 x 的区间的最优值一点包含在长度为 x+1的区间内。更新一下即可。
typedef pair<int, int> pll;
const int N = 200010;
int L[N], R[N];
pll s[N];
int top;
int a[N], dp[N];
int main()
{
int n;
while( ~scanf("%d", &n) ) {
top = -1;
for( int i = 1; i <= n; ++i ) {
scanf("%d", &a[i]);
}
s[++top] = make_pair(-1, 0);
for( int i = 1; i <= n; ++i ) {
while( top > -1 && s[top].first >= a[i] ) {
top--;
}
L[i] = s[top].second;
s[++top] = make_pair( a[i], i );
}
top = -1;
s[++top] = make_pair( -1, n+1 );
for( int i = n; i >= 1; --i ) {
while( top > -1 && s[top].first >= a[i] ) {
top--;
}
R[i] = s[top].second;
s[++top] = make_pair( a[i], i );
}
memset( dp, -1, sizeof( dp ) ); // x为包括 i 点 在内向左向右延伸的距离,dp[x] 是表示 长度为 x 的最优解
for( int i = 1; i <= n; ++i ) {
dp[ R[i]-L[i]-1 ] = max( dp[ R[i]-L[i]-1 ], a[i] );
}
for( int i = n-1; i >= 1; --i )
dp[i] = max( dp[i+1], dp[i] );
for( int i = 1; i <= n; ++i )
printf("%d ", dp[i]);
puts("");
}
return 0;
}