格雷编码是一个二进制数字系统,在该系统中,两个连续的数值仅有一个位数的差异。给定一个代表编码总位数的非负整数 n,打印其格雷编码序列。格雷编码序列必须以 0 开头。
一些例子如下(题目中有讲到两种编码格式,这里只例举其中一种):
n=0 n=1 n=2 n=3
0 - 0 0 - 0 00 - 0 000 - 0
1 - 1 01 - 1 001 - 1
11 - 3 011 - 3
10 - 2 010 - 2
110 - 6
111 - 7
101 - 5
100 - 4
n=0时,输出[0]
n=1时,输出[0,1]
n=2时,输出[0,1,3,2]
n=3时,输出[0,1,3,2,6,7,5,4]
通过观察上面的例子,其实可以找到一定的规律,如下图:
即n的格雷编码,前半部分即是n-1的格雷编码,而后半部分则是前半部分的倒序并加上2^(n-1)的和。规律找到了,也就很容易用算法实现了,代码如下:
class Solution {
public:
vector<int> grayCode(int n) {
vector<int> code;
int add_item = 1, len;
code.push_back(0);
for (;n > 0; n--) {
len = code.size();
for (int i = len - 1; i >= 0; --i)
code.push_back(code[i] + add_item);
add_item = add_item << 1;
}
return code;
}
};
一次通过,但是发现居然还有更快的,后面再想下吧。