1、把所有的楼都供上电。
2、所用电线花费最少
-
输入
-
第一行是一个整数n表示有n组测试数据。(n<5)
每组测试数据的第一行是两个整数v,e.
v表示学校里楼的总个数(v<=500)
随后的e行里,每行有三个整数a,b,c表示a与b之间如果建铺设线路花费为c(c<=100)。(哪两栋楼间如果没有指明花费,则表示这两栋楼直接连通需要费用太大或者不可能连通)
随后的1行里,有v个整数,其中第i个数表示从第i号楼接线到外界供电设施所需要的费用。( 0<e<v*(v-1)/2 )
(楼的编号从1开始),由于安全问题,只能选择一个楼连接到外界供电设备。
数据保证至少存在一种方案满足要求。
输出
每组测试数据输出一个正整数,表示铺设满足校长要求的线路的最小花费。
思路:这是一个最小生成树+铺设线路的最小费用。
代码:
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
using namespace std;
struct edge {
int u, v, w;
};
const int NODE_NUM = 501;
edge e[NODE_NUM*NODE_NUM];
int father[NODE_NUM];
int n, ne; //n是顶点的个数,ne是边的个数
bool cmp(edge a,edge b) {
return a.w < b.w; //return a.w > b.w; ---是求最大生成树
}
void make_set() {
for (int i = 1; i <= n; ++i)
father[i] = i;
}
int find_set(int i) {
if (father[i] != i) {
father[i] = find_set(father[i]);
}
return father[i];
}
bool union_set(int a, int b) { //a --> b 并查集
a = find_set(a);
b = find_set(b);
if (a != b) { //没有共同祖先,说明没有形成回路
father[a] = b; //将节点纳入最小生成树集合
return true;
} else {
return false;
}
}
int kruskal() {
int i, mst_edge = 0, sum = 0;
make_set();
sort(e, e+ne, cmp); //将边按升序排序
for (i = 0; i < ne; ++i) {
//如果加入的边不会使树形成回路
if (union_set(e[i].u, e[i].v)) {
sum += e[i].w;
//如果纳入的边数等于顶点数-1,则说明最小生成树形成
if (++mst_edge == n - 1) {
return sum; //如果图是连通图,返回权值
}
}
}
return mst_edge; //如果不是连通图,则返回最大的连通(可以是多个生成树)的边的个数,
}
int main() {
int T;
int cost[1000];
while(~scanf("%d",&T)) {
while(T--) {
scanf("%d%d",&n,&ne);
for(int i=0; i<ne; i++) {
scanf("%d%d%d",&e[i].u,&e[i].v,&e[i].w);
if(e[i].u>e[i].v) {
swap(e[i].u,e[i].v);
}
}
for(int i=0; i<n; i++) {
scanf("%d",&cost[i]);
}
sort(cost,cost+n);
printf("%d\n",kruskal()+cost[0]);
}
}
return 0;
}
/*
1
4 6
1 2 10
2 3 10
3 1 10
1 4 1
2 4 1
3 4 1
1 3 5 6
*/