Given n non-negative integers a1, a2, ..., an, where each represents a point at coordinate (i, ai). n vertical lines are drawn such that the two endpoints of line i is at (i, ai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water.
Note: You may not slant the container.
题目大意:给定一个高度数组,相当于隔板的高度,数组的下标表示其X坐标(这里下标规定从1开始),求任意两隔板间的最大盛水量。
(短板原理,盛水容量为X坐标之差乘以较小隔板的高度)
高度数组首尾两边设一个指针,然后计算area,如果height[i] <= height[j],那么i++,因为在这里height[i]是瓶颈,j往里移只会减少面积,不会再增加area。
这是一个贪心的策略,每次取两边围栏最矮的一个推进,希望获取更多的水。
面积 area = min(height[j], height[i]) * (j-i),当height[i] < height[j]时,此时面积 area = height[i] * (j-i); 由于height[i]是短板,不管跟谁组合,它能达到的最大面积取决于 j-i,而此时j-i的距离是最大的,因此,此面积即为以i为左边界的最大面积,然后++i;同理得j的变化。因为对于i, j,总有一个是短板,每次是短板的就发生变化,因此覆盖了所有情况。
class Solution {
public:
int maxArea(vector<int>& height)
{
int max_area = 0;
int area = 0;
int n = height.size();
int left = 0;
int right = n -1;
while(left < right)
{
area = min(height[left],height[right]) * (right - left);
if(area > max_area)
{
max_area = area;
}
if(height[left] < height[right])
left++;
else
right--;
}
return max_area;
}
};