- 前沿
- LeetCode总结的腾讯dp问题,腾讯常考的问题中也会常常出现一些动态规划的题目,这些题目往往都非常直接,只要读清楚题意和条件,认真思考,没有想象中的这么困
爬楼梯
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
示例 1:
输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶
示例 2:输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶
思路:解决dp明白两个点
- 是否是子问题
- 状态是否可变,如何推导递推公式
公式:知道第n阶是由n-1 和n-2阶变化过来,所以可以推导出公式如下:
f(n) = f(n-1) + f(n-2)
代码:
class Solution(object): def climbStairs(self, n): """ :type n: int :rtype: int """ if n < 3: return n dp = [0 for i in range(n + 1)] dp[1] = 1 dp[2] = 2 for i in range(3, n + 1): dp[i] = dp[i - 1] + dp[i - 2]; return dp[n]
最大子序合
给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例:
输入: [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/maximum-subarray
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
思路:
用dp求解出第dp[i]个的连续值当前最大值,在max(dp)数组求最大的一个子集合就行
代码:
class Solution(object): def maxSubArray( nums): """ :type nums: List[int] :rtype: int """ n = len(nums) dp = nums i = 1 while i < n: dp[i] = max(dp[i], dp[i] + dp[i - 1]) i = i + 1 print(dp) return max(dp)