动态规划-简单dp-刷题日记(1)

 

 

  • 前沿
  1.    LeetCode总结的腾讯dp问题,腾讯常考的问题中也会常常出现一些动态规划的题目,这些题目往往都非常直接,只要读清楚题意和条件,认真思考,没有想象中的这么困

爬楼梯

爬楼梯

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

示例 1:

输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
1.  1 阶 + 1 阶
2.  2 阶
示例 2:

输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
1.  1 阶 + 1 阶 + 1 阶
2.  1 阶 + 2 阶
3.  2 阶 + 1 阶

思路:解决dp明白两个点

  1. 是否是子问题
  2. 状态是否可变,如何推导递推公式

公式:知道第n阶是由n-1 和n-2阶变化过来,所以可以推导出公式如下:

f(n) = f(n-1) + f(n-2)

代码:

class Solution(object):
    def climbStairs(self, n):
        """
        :type n: int
        :rtype: int
        """
        if n < 3:
            return n
        dp = [0 for i in range(n + 1)]
        dp[1] = 1
        dp[2] = 2
        for i in range(3, n + 1):
            dp[i] = dp[i - 1] + dp[i - 2];

        return dp[n]

 

最大子序合

最大子序合

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

示例:

输入: [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/maximum-subarray
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

思路:

用dp求解出第dp[i]个的连续值当前最大值,在max(dp)数组求最大的一个子集合就行

 

代码:

class Solution(object):
    def maxSubArray( nums):
     """
    :type nums: List[int]
    :rtype: int

    """
    n = len(nums)

    dp = nums

    i = 1
    while i < n:
        dp[i] = max(dp[i], dp[i] + dp[i - 1])
        i = i + 1
    print(dp)
    return max(dp)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值