人脸特征点检测(二)参数化模型方法

本篇主要讨论Zhu et.al [1] 的工作。该方法是一个同时人脸检测、姿态估计和特征点检测的方法。主要优点是可以同时检测正脸和侧脸的关键点。缺点主要是运行速度比较慢,平均一张500×500的图像需要几秒钟时间检测。这主要是因为论文中采用了13个模板去匹配;同时计算特征金字塔需要的时间较多。
这个工作是2012年的工作,已经比较老了。在2015年的时候,我把作者提供的代码写成了C++以加速。代码我放在了github上:https://github.com/goodluckcwl/Face-alignment-Trees
实验效果图如下:
这里写图片描述

速度是5fps,比原来有所提高。但是还是太慢了,大家可以看看。

参考文献

[1] Zhu X, Ramanan D. Face detection, pose estimation, and landmark localization in the wild[C]//Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012: 2879-2886.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值