1.直接插入排序算法的定义
直接插入排序(Straight Insertion Sort)的基本操作是将一个记录插入到已经排好序的有序表中,从而得到一个新的、记录数增1的有序表。
2.直接插入排序的代码
顾名思义,从名称上也可以知道它是一种插入排序的方法。
/*对顺序表L作直接插入排序*/
1 void InsertSort(SqList *L)
2 {
3 int i,j;
4 for(i=2; i<=L->length; i++)
5 {
6 if(L->r[i]<L->r[i-1]) /*需将L->r[i]插入有序子集*/
7 {
8 L->r[0] = L->r[i]; /*设置哨兵*/
9 for(j=i-1; L->r[j]>L->r[0]; j--)
10 L->r[j+1] = L->r[j]; /*记录后移*/
11 L->r[j+1] = L->r[0]; /*插入到正确位置*/
12 }
13 }
14 }
1.程序开始运行,此时我们传入的SqList参数的值为length=6,r[6]={0,5,3,4,6,2},其中r[0]=0将用于后面起到哨兵的作用。
2.第4~13行就是排序的主循环。i从2开始的意思是我们假设r[1]=5已经放好位置,后面的牌其实就是插入到它的左侧还是右侧的问题。
3.第6行,此时i=2,L.r[i]=3比L.r[i-2]=5要小,因此执行第8~11行的操作。第8行,我们将L.r[0]赋值为L.r[i]=3的目的是为了起到第9~10行的循环终止的判断依据。如下图所示,图中下方的虚线箭头,就是第10行,L.r[j+1]=L.r[j]的过程,将5右移一位。
4.此时,第10行就是在移动完成后,空出了空位,然后第11行L.r[j+1]=L.r[0],将哨兵的3赋值给j=0时的L.r[j+1],也就是说,将3放置到L.r[1]的位置,如下图所示
5.继续循环,第6行,因为此时i=3,L.r[i]=4比L.r[i-1]=5要小,因此执行第8~11行的操作,将5再右移一位,将4放置到当前5所在位置,如下图所示
6.再次循环,此时i=4。因为L.r[i]=6比L.r[i-1]=5要大,于是第8~11行代码不执行,此时前三个数的位置没有变化,如下图所示
7.再次循环,此时i=5,因为L.r[i]=5比L.r[i-1]要小,因此要执行第8~11行的操作。由于6、5、4、3都比2大,它们都将右移一位,将2放置到当前3所在位置。如下图所示,此时我们的排序也就完成了。
3.直接插入排序的复杂度分析
从空间上来看,直接插入排序算法需要一个记录的辅助空间,因此关键是看它的时间复杂度。
当最好的情况,也就是要排序的表本身就是有序的,比如纸牌拿到后就是{2,3,4,5,6},那么我们比较次数,其实就是代码第6行每个L.r[i]与L.r[i-1]的比较,共比较了次,由于,每次都是L.r[i]>L.r[i-1],因此没有移动的记录,时间复杂度为O(n)。
当最坏的情况,即待排序表示逆序的情况,比如{6,5,4,3,2},此时需要比较(n+2)(n-1)/2次,而记录的移动次数也达到最大值(n+4)(n-1)/2次。
如果排序记录时随机的,那么根据概率相同的原则,平均比较和移动次数约为n*n/4次。*因此,我们得出直接插入排序法的时间复杂度为O(n2)。从这里也看出,同样的O(n2)时间复杂度,直接插入排序法比冒泡和简单选择排序的性能要好一些。
4.直接插入排序的实现(Java)
工程目录结构
排序类
package com.red.sort.insertion;
public class InsertionSort {
public void insertionSort(int[] array) {
int i, j, key;
for (j = 1; j < array.length; j++) {
key = array[j];
i = j - 1;
while (i >= 0 && array[i] > key) {
array[i + 1] = array[i];// 记录后移
i = i - 1;
}
array[i + 1] = key;// 插入到正确位置
}
}
}
测试类
package com.red.sort.insertion;
public class Main {
public static void main(String[] args) {
int[] array = new int[] { 9, 1, 5, 8, 3, 7, 4, 6, 2 };
InsertionSort insertionSort = new InsertionSort();
insertionSort.insertionSort(array);
for (int i = 0; i < array.length; i++) {
System.out.print(array[i] + " ");
}
}
}
输出结果:
1 2 3 4 5 6 7 8 9