性能调优
文章平均质量分 85
朱智文
不求大富大贵,但求一路常青
展开
-
Spark性能调优之合理设置并行度
1.Spark的并行度指的是什么? spark作业中,各个stage的task的数量,也就代表了spark作业在各个阶段stage的并行度! 当分配完所能分配的最大资源了,然后对应资源去调节程序的并行度,如果并行度没有与资源相匹配,那么导致你分配下去的资源都浪费掉了。同时并行运行,还可以让每个task要处理的数量变少(很简单的原理。合理设置并行度,可以充分利用集群资源,减少每个原创 2017-12-18 16:09:21 · 2580 阅读 · 0 评论 -
Spark性能调优之代码方面的优化
1.避免创建重复的RDD 对性能没有问题,但会造成代码混乱 2.尽可能复用同一个RDD,减少产生RDD的个数 3.对多次使用的RDD进行持久化(cache,persist,checkpoint)如何选择一种最合适的持久化策略? 默认MEMORY_ONLY, 性能很高, 而且不需要复制一份数据的副本,远程传送到其他节点上(BlockManager中的Block原创 2017-12-18 16:22:11 · 394 阅读 · 0 评论 -
Spark性能优化指南
前言继基础篇讲解了每个Spark开发人员都必须熟知的开发调优与资源调优之后,本文作为《Spark性能优化指南》的高级篇,将深入分析数据倾斜调优与shuffle调优,以解决更加棘手的性能问题。数据倾斜调优调优概述有的时候,我们可能会遇到大数据计算中一个最棘手的问题——数据倾斜,此时Spark作业的性能会比期望差很多。数据倾斜调优,就是使用各种技术方案解决不同类型的数据原创 2017-12-18 18:38:05 · 275 阅读 · 0 评论 -
Spark SQL性能优化
性能优化参数针对Spark SQL 性能调优参数如下:代码示例import java.util.List;import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaSparkContext;import org.apache.spark.sql.api.java.JavaSQLC原创 2017-12-18 18:40:31 · 736 阅读 · 0 评论